skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of MJO Vertically Tilted Structure on Its Phase Speed from the Moisture Mode Theory Perspective
Abstract The effect of vertically tilted structure (VTS) of the MJO on its phase propagation speed was investigated through the diagnosis of ERA-Interim reanalysis data during 1979–2012. A total of 84 eastward propagating MJO events were selected. It was found that all MJO events averaged throughout their life cycles exhibited a clear VTS, and the tilting strength was significantly positively correlated to the phase speed. The physical mechanism through which the VTS influenced the phase speed was investigated. On the one hand, a stronger VTS led to a stronger vertical overturning circulation and a stronger descent in the front, which caused a greater positive moist static energy (MSE) tendency in situ through enhanced vertical MSE advection. The stronger MSE tendency gradient led to a faster eastward phase speed. On the other hand, the enhanced overturning circulation in front of MJO convection led to a stronger easterly/low pressure anomaly at the top of the boundary layer, which induced a stronger boundary layer convergence and stronger ascent in the lower troposphere. This strengthened the boundary layer moisture asymmetry and favored a faster eastward propagation speed.  more » « less
Award ID(s):
1643297
PAR ID:
10273659
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Climate
Volume:
34
Issue:
11
ISSN:
0894-8755
Page Range / eLocation ID:
4505 to 4520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Two existing moisture mode theories of the MJO, one emphasizing boundary layer moisture asymmetry (MA) and the other emphasizing column-integrated moist static energy (MSE) tendency asymmetry (TA), were validated with the diagnosis of observational data during 1979–2012. A total of 2343 MJO days are selected. While all these days show a clear phase leading of the boundary layer moisture, 20% of these days do not show a positive column-integrated MSE tendency in front of MJO convection (non-TA). A further MSE budget analysis indicates that the difference between the non-TA composite and the TA composite lies in the zonal extent of anomalously vertical overturning circulation in front of the MJO convection. A background mean precipitation modulation mechanism is proposed to explain the distinctive circulation responses. Dependent on the MJO location, an anomalous Gill response to the heating is greatly modulated by the seasonal mean and ENSO induced precipitation fields. Despite the negative MSE tendency in front of MJO convection in the non-TA group, the system continues moving eastward due to the effect of the boundary layer moistening, which promotes a convectively unstable stratification ahead of MJO convection. The analysis result suggests that the first type of moisture mode theories, the moisture asymmetry mechanism, appears more robust, particularly over the eastern Maritime Continent and western Pacific. 
    more » « less
  2. null (Ed.)
    Abstract The diversity of the Madden-Julian Oscillation (MJO) in terms of its maximum intensity, zonal extent and phase speed was explored using a cluster analysis method. The zonal extent is found to be significantly correlated to the phase speed. A longer zonal extent is often associated with a faster phase speed. The diversities of zonal extent and speed are connected with distinctive interannual sea surface temperature anomaly (SSTA) distributions and associated moisture and circulation patterns over the equatorial Pacific. An El Niño–like background SSTA leads to enhanced precipitation over the central Pacific, allowing a stronger vertically overturning circulation to the east of the MJO. This promotes both a larger east-west asymmetry of column-integrated moist static energy (MSE) tendency and a greater boundary-layer moisture leading, serving as potential causes of the faster phase speed. The El Niño–like SSTA also favors the MJOs intruding further into the Pacific, causing a larger zonal extent. The intensity diversity is associated with the interannual SSTA over the Maritime Continent and background moisture condition over the tropical Indian Ocean. An observed warm SSTA over the Maritime Continent excites a local Walker cell with a subsidence over the Indian Ocean, which could decrease the background moisture, weakening the MJO intensity. The intensity difference between strong and weak events would be amplified due to distinct intensity growth speed. The faster intensity growth of a strong MJO is attributed to a greater longwave radiative heating and a greater surface latent heat flux, as both of which contribute to a greater total time change rate of the column-integrated MSE. 
    more » « less
  3. null (Ed.)
    Abstract A normalization method is applied to MJO-scale precipitation and column integrated moist static energy (MSE) anomalies to clearly illustrate the phase evolution of MJO. It is found that the MJO peak phases do not move smoothly, rather they jump from the original convective region to a new location to its east. Such a discontinuous phase evolution is related to the emerging and developing of new congestus convection to the east of the preexisting deep convection. While the characteristic length scale of the phase jump depends on a Kelvin wave response, the associated time scale represents the establishment of an unstable stratification in the front due to boundary layer moistening. The combined effect of the aforementioned characteristic length and time scales determines the observed slow eastward phase speed. Such a phase evolution characteristic seems to support the moisture mode theory of the second type that emphasizes the boundary layer moisture asymmetry, because the moisture mode theory of the first type, which emphasizes the moisture or MSE tendency asymmetry, might favor more “smooth” phase propagation. A longitudinal-location-dependent premoistening mechanism is found based on moisture budget analysis. For the MJO in the eastern Indian Ocean, the premoistening in front of the MJO convection arises from vertical advection, whereas for the MJO over the western Pacific Ocean, it is attributed to the surface evaporating process. 
    more » « less
  4. Abstract The variability of the phase speed of the Madden–Julian oscillation (MJO) is poorly understood. The authors assess how the phase speed of the convective signal of the MJO associates with the background states over eastern Africa and the Indian Ocean. Relaxation of the coupling between tropical modes and their circulation has been previously linked to faster propagation; for example, the MJO speeds up over the eastern Pacific where its convective signal decouples from the circulation. In contrast, our results show that fast MJO events happen to exist during periods of wetter background states (>90 days) from East Africa across the Indian Ocean, whereas slow MJO is associated with dry background states. We found that fast MJO exhibits strong active and inactive phases with a structure suggesting more hierarchical convection. Results indicate that the association of the phase speed of the MJO as seen in the integrated filtered moist static energy with its tendency is stronger than the association of the phase speed as observed in the dry static energy with its tendency which is consistent with the acceleration of the MJO during wet background states. Also, our results indicate that the MJO may be faster during periods of enhanced low-level moisture because these periods have anomalously weak upper-tropospheric easterly background winds, which reduce the westward advection of the MJO by the background easterly wind, resulting in higher eastward phase speed of the MJO. The acceleration of the MJO by the background zonal wind overwhelms the deceleration associated with the moist-wave dynamics. Significance StatementThis study shows that the Madden–Julian oscillation (MJO), which is the dominant subseasonal weather signal in the tropics, moves eastward more quickly across eastern Africa and the Indian Ocean when the region is abnormally moist. The faster propagation does not appear to result from the higher moisture but instead from encountering weaker-than-normal upper-air winds from the east that tend to occur during moist periods. 
    more » « less
  5. Abstract The impacts of rising carbon dioxide (CO2) concentration and ocean feedbacks on the Madden‐Julian Oscillation (MJO) are investigated with the Community Atmospheric Model Version 5 (CAM5) in an idealized aquaplanet configuration. The climate response associated with quadrupled CO2concentrations and sea surface temperature (SST) warming are examined in both the uncoupled CAM5 and a version coupled to a slab ocean model. Increasing CO2concentrations while holding SST fixed produces only small impacts to MJO characteristics, while the SST change resulting from increased CO2concentrations produces a significant increase in MJO precipitation anomaly amplitude but smaller increase in MJO circulation anomaly amplitude, consistent with previous studies. MJO propagation speed increases in both coupled simulations with quadrupling of CO2and uncoupled simulations with the same climatological surface temperature warming imposed, although propagation speed is increased more with coupling. While climatological SST changes are identical between coupled and uncoupled runs, other aspects of the basic state such as zonal winds do not change identically. For example, climate warming produces stronger superrotation and weaker mean lower tropospheric easterlies in the coupled run, which contributes to greater increases in MJO eastward propagation speed with warming through its effect on moisture advection. The column process, representing the sum of vertical moist static energy (MSE) advection and radiative heating anomalies, also supports faster eastward propagation with warming in the coupled run. How differing basic states between coupled and uncoupled runs contribute to this behavior is discussed in more detail. 
    more » « less