skip to main content

Title: Tiered Sampling: An Efficient Method for Counting Sparse Motifs in Massive Graph Streams
We introduce Tiered Sampling , a novel technique for estimating the count of sparse motifs in massive graphs whose edges are observed in a stream. Our technique requires only a single pass on the data and uses a memory of fixed size M , which can be magnitudes smaller than the number of edges. Our methods address the challenging task of counting sparse motifs—sub-graph patterns—that have a low probability of appearing in a sample of M edges in the graph, which is the maximum amount of data available to the algorithms in each step. To obtain an unbiased and low variance estimate of the count, we partition the available memory into tiers (layers) of reservoir samples. While the base layer is a standard reservoir sample of edges, other layers are reservoir samples of sub-structures of the desired motif. By storing more frequent sub-structures of the motif, we increase the probability of detecting an occurrence of the sparse motif we are counting, thus decreasing the variance and error of the estimate. While we focus on the designing and analysis of algorithms for counting 4-cliques, we present a method which allows generalizing Tiered Sampling to obtain high-quality estimates for the number of more » occurrence of any sub-graph of interest, while reducing the analysis effort due to specific properties of the pattern of interest. We present a complete analytical analysis and extensive experimental evaluation of our proposed method using both synthetic and real-world data. Our results demonstrate the advantage of our method in obtaining high-quality approximations for the number of 4 and 5-cliques for large graphs using a very limited amount of memory, significantly outperforming the single edge sample approach for counting sparse motifs in large scale graphs. « less
Authors:
; ;
Award ID(s):
1813444
Publication Date:
NSF-PAR ID:
10273679
Journal Name:
ACM Transactions on Knowledge Discovery from Data
Volume:
15
Issue:
5
Page Range or eLocation-ID:
1 to 52
ISSN:
1556-4681
Sponsoring Org:
National Science Foundation
More Like this
  1. Pattern counting in graphs is fundamental to several network sci- ence tasks, and there is an abundance of scalable methods for estimating counts of small patterns, often called motifs, in large graphs. However, modern graph datasets now contain richer structure, and incorporating temporal information in particular has become a key part of network analysis. Consequently, temporal motifs, which are generalizations of small subgraph patterns that incorporate temporal ordering on edges, are an emerging part of the network analysis toolbox. However, there are no algorithms for fast estimation of temporal motifs counts; moreover, we show that even counting simple temporal starmore »motifs is NP-complete. Thus, there is a need for fast and approximate algorithms. Here, we present the first frequency estimation algorithms for counting temporal motifs. More specifically, we develop a sampling framework that sits as a layer on top of existing exact counting algorithms and enables fast and accurate memory-efficient estimates of temporal motif counts. Our results show that we can achieve one to two orders of magnitude speedups over existing algorithms with minimal and controllable loss in accuracy on a number of datasets.« less
  2. Counting and uniformly sampling motifs in a graph are fundamental algorithmic tasks with numerous applications across multiple fields. Since these problems are computationally expensive, recent efforts have focused on devising sublinear-time algorithms for these problems. We consider the model where the algorithm gets a constant size motif H and query access to a graph G, where the allowed queries are degree, neighbor, and pair queries, as well as uniform edge sample queries. In the sampling task, the algorithm is required to output a uniformly distributed copy of H in G (if one exists), and in the counting task it ismore »required to output a good estimate to the number of copies of H in G. Previous algorithms for the uniform sampling task were based on a decomposition of H into a collection of odd cycles and stars, denoted D∗(H) = {Ok1 , ...,Okq , Sp1 , ..., Spℓ19 }. These algorithms were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, for any motif H whose decomposition contains at least two components or at least one star, is always preferable. The main ingredient leading to this improvement is an improved uniform algorithm for sampling stars, which might be of independent interest, as it allows to sample vertices according to the p-th moment of the degree distribution. We further show how to use our sampling algorithm to get an approximate counting algorithm, with essentially the same complexity. Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at least one odd cycle. That is, we prove that for any decomposition D that contains at least one odd cycle, there exists a motif HD 30 with decomposition D, and a family of graphs G, so that in order to output a uniform copy of H in a uniformly chosen graph in G, the number of required queries matches our upper bound. These are the first lower bounds for motifs H with a nontrivial decomposition, i.e., motifs that have more than a single component in their decomposition.« less
  3. We revisit the much-studied problem of space-efficiently estimating the number of triangles in a graph stream, and extensions of this problem to counting fixed-sized cliques and cycles, obtaining a number of new upper and lower bounds. For the important special case of counting triangles, we give a $4$-pass, $(1\pm\varepsilon)$-approximate, randomized algorithm that needs at most $\widetilde{O}(\varepsilon^{-2}\cdot m^{3/2}/T)$ space, where $m$ is the number of edges and $T$ is a promised lower bound on the number of triangles. This matches the space bound of a very recent algorithm (McGregor et al., PODS 2016), with an arguably simpler and more general technique.more »We give an improved multi-pass lower bound of $\Omega(\min\{m^{3/2}/T, m/\sqrt{T}\})$, applicable at essentially all densities $\Omega(n) \le m \le O(n^2)$. We also prove other multi-pass lower bounds in terms of various structural parameters of the input graph. Together, our results resolve a couple of open questions raised in recent work (Braverman et al., ICALP 2013). Our presentation emphasizes more general frameworks, for both upper and lower bounds. We give a sampling algorithm for counting arbitrary subgraphs and then improve it via combinatorial means in the special cases of counting odd cliques and odd cycles. Our results show that these problems are considerably easier in the cash-register streaming model than in the turnstile model, where previous work had focused (Manjunath et al., ESA 2011; Kane et al., ICALP 2012). We use Tur{\'a}n graphs and related gadgets to derive lower bounds for counting cliques and cycles, with triangle-counting lower bounds following as a corollary.« less
  4. Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "on-the-fly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire objectmore »up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-Rényi G(n,p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries in the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree Δ. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n,p) model). The distribution over valid colorings is instead specified via a "huge" input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≥ 9Δ, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself.« less
  5. We consider the problem of sampling and approximately counting an arbitrary given motif H in a graph G, where access to G is given via queries: degree, neighbor, and pair, as well as uniform edge sample queries. Previous algorithms for these tasks were based on a decomposition of H into a collection of odd cycles and stars, denoted D^*(H) = {O_{k₁},...,O_{k_q}, S_{p₁},...,S_{p_𝓁}}. These algorithms were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up tomore »poly(log n) factors, is always at least as good, and for most graphs G is strictly better. The main ingredient leading to this improvement is an improved uniform algorithm for sampling stars, which might be of independent interest, as it allows to sample vertices according to the p-th moment of the degree distribution. Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at least one odd cycle. These are the first lower bounds for motifs H with a nontrivial decomposition, i.e., motifs that have more than a single component in their decomposition.« less