skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Taro Genome Assembly and Linkage Map Reveal QTLs for Resistance to Taro Leaf Blight
Abstract Taro (Colocasia esculenta) is a food staple widely cultivated in the humid tropics of Asia, Africa, Pacific and the Caribbean. One of the greatest threats to taro production is Taro Leaf Blight caused by the oomycete pathogen Phytophthora colocasiae. Here we describe a de novo taro genome assembly and use it to analyze sequence data from a Taro Leaf Blight resistant mapping population. The genome was assembled from linked-read sequences (10x Genomics; ∼60x coverage) and gap-filled and scaffolded with contigs assembled from Oxford Nanopore Technology long-reads and linkage map results. The haploid assembly was 2.45 Gb total, with a maximum contig length of 38 Mb and scaffold N50 of 317,420 bp. A comparison of family-level (Araceae) genome features reveals the repeat content of taro to be 82%, >3.5x greater than in great duckweed (Spirodela polyrhiza), 23%. Both genomes recovered a similar percent of Benchmarking Universal Single-copy Orthologs, 80% and 84%, based on a 3,236 gene database for monocot plants. A greater number of nucleotide-binding leucine-rich repeat disease resistance genes were present in genomes of taro than the duckweed, ∼391 vs. ∼70 (∼182 and ∼46 complete). The mapping population data revealed 16 major linkage groups with 520 markers, and 10 quantitative trait loci (QTL) significantly associated with Taro Leaf Blight disease resistance. The genome sequence of taro enhances our understanding of resistance to TLB, and provides markers that may accelerate breeding programs. This genome project may provide a template for developing genomic resources in other understudied plant species.  more » « less
Award ID(s):
1920304
PAR ID:
10273713
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
10
Issue:
8
ISSN:
2160-1836
Page Range / eLocation ID:
2763 to 2775
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McIntyre, L (Ed.)
    Abstract Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss’s wilt was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss’s wilt QTLs in the individual populations and an additional 6 using joint linkage mapping. All Goss’s wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quantitative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases. 
    more » « less
  2. Abstract Two mapping populations were developed from crosses of the Asianindicarice (Oryza sativaL.) cultivar ‘Dee Geo Woo Gen’ (DGWG; PI 699210 Parent, PI 699212 Parent) and two weedy rice ecotypes, an early‐flowering straw hull (SH) biotype AR‐2000‐1135‐01 (PI 699209 Parent) collected in Arkansas and a late‐flowering black hull (BHA) biotype MS‐1996‐9 (PI 699211 Parent) collected in Mississippi. The weed and crop‐based rice recombinant inbred line (RIL) mapping populations have been used to identify genomic regions associated with weedy traits as well as resistance to sheath blight and rice blast diseases. The mapping population consists of 185 (DGWG/SH; Reg. no. MP‐9, NSL 541035 MAP) and 234 (BHA/DGWG; Reg. no. MP‐10, NSL 541036 MAP) F8RILs, of which 175 (DGWG/SH) and 224 (BHA/DGWG) were used to construct two linkage maps using single nucleotide polymorphic markers to identify weedy traits, sheath blight, and blast resistance loci. These mapping populations and related datasets represent a valuable resource for basic rice evolutionary genomic research and applied marker‐assisted breeding efforts in disease resistance. 
    more » « less
  3. Fusarium head blight (FHB) is a devastating disease in wheat. The use of resistant germplasm from diverse sources can significantly improve resistance to the disease. “Surpresa” is a Brazilian spring wheat cultivar with moderate FHB resistance, different from currently used sources. In this study, we aimed to identify and map the genetic loci for FHB resistance in Surpresa. A mapping population consisting of 187 recombinant inbred lines (RILs) was developed from a cross between Surpresa and a susceptible spring wheat cultivar, “Wheaton.” The population was evaluated for FHB by the point-inoculation method in three greenhouse experiments and four field trials between 2016 and 2018. Mean disease severity for Surpresa and Wheaton was 41.2 and 84.9% across the 3 years of experiments, ranging from 30.3 to 59.1% and 74.3 to 91.4%, respectively. The mean FHB severity of the NILs was 57%, with an overall range from 7 to 100%, suggesting transgressive segregation in the population. The population was genotyped using a two-enzyme genotyping-by-sequencing approach, and a genetic map was constructed with 5,431 single nucleotide polymorphism (SNP) markers. Four QTL for type II resistance were detected on chromosomes 3A, 5A, 6A, and 7A, explaining 10.4–14.4% of the total phenotypic variation. The largest effect QTL was mapped on chromosome 7A and explained 14.4% of the phenotypic variation; however, it co-localized with a QTL governing the days to anthesis trait. A QTL for mycotoxin accumulation was also detected on chromosome 1B, explaining 18.8% of the total phenotypic variation. The QTL for FHB resistance identified in the study may diversify the FHB resistance gene pool and increase overall resistance to the disease in wheat. 
    more » « less
  4. Abstract Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes. 
    more » « less
  5. Due to the current limitations of sequencing technologies, de novo genome assembly is typically carried out in two stages, namely contig (sequence) assembly and scaffolding. While scaffolding is computationally easier than sequence assembly, the scaffolding problem can be challenging due to the high repetitive content of eukaryotic genomes, possible mis-joins in assembled contigs and inaccuracies in the linkage information. Genome scaffolding tools either use paired-end/mate-pair/linked/Hi-C reads or genome-wide maps (optical, physical or genetic) as linkage information. Optical maps (in particular Bionano Genomics maps) have been extensively used in many recent large-scale genome assembly projects (e.g., goat, apple, barley, maize, quinoa, sea bass, among others). However, the most commonly used scaffolding tools have a serious limitation: they can only deal with one optical map at a time, forcing users to alternate or iterate over multiple maps. In this paper, we introduce a novel scaffolding algorithm called OMGS that for the first time can take advantages of multiple optical maps. OMGS solves several optimization problems to generate scaffolds with optimal contiguity and correctness. Extensive experimental results demonstrate that our tool outperforms existing methods when multiple optical maps are available, and produces comparable scaffolds using a single optical map. OMGS can be obtained from GIT. 
    more » « less