skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identification of loci conferring resistance to 4 foliar diseases of maize
Abstract Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss’s wilt was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss’s wilt QTLs in the individual populations and an additional 6 using joint linkage mapping. All Goss’s wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quantitative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases.  more » « less
Award ID(s):
2154872
PAR ID:
10513984
Author(s) / Creator(s):
; ; ;
Editor(s):
McIntyre, L
Publisher / Repository:
Genetics Society of America
Date Published:
Journal Name:
G3: Genes, Genomes, Genetics
Volume:
14
Issue:
2
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Maize significantly contributes to food and fuel production. Yields can be reduced due to foliar diseases, which reduce photosynthetic leaf area. The bacterial foliar disease Goss's wilt (caused byClavibacter nebraskensis) can cause significant yield losses in susceptible maize varieties.C. nebraskensiscan infect leaves through wounds and colonize the vascular tissue of the leaf. We present a protocol that replicates this process with the use of a “clapper” with pins on one end to create wounds and a sponge soaked in inoculum on the other end, which allows for efficient field inoculations of maize leaves. Disease severity is then rated on a percentage scale multiple times over the season to generate an area under disease progress curve (AUDPC). Genetic host resistance is one of the most effective forms of foliar disease control in maize, as there are few effective forms of chemical control for bacterial diseases that affect maize. Screening for resistance in diverse germplasm, or for fine mapping a specific resistance gene, requires inoculating large populations in the field for obtaining phenotypic data. Our high-throughput protocol allows for large-scale disease evaluations and is useful for finding forms of genetic resistance or to understand plant–pathogen interactions of bacterial foliar pathogens. 
    more » « less
  2. Bacterial leaf streak (BLS) of maize is an emerging foliar disease of maize in the Americas. It is caused by the gram-negative nonvascular bacterium Xanthomonas vasicola pv. vasculorum. There are no chemical controls available for BLS, and thus, host resistance is crucial for managing X. vasicola pv. vasculorum. The objective of this study was to examine the genetic determinants of resistance to X. vasicola pv. vasculorum in maize, as well as the relationship between other defense-related traits and BLS resistance. Specifically, we examined the correlations among BLS severity, severity for three fungal diseases, flg-22 response, hypersensitive response, and auricle color. We conducted quantitative trait locus (QTL) mapping for X. vasicola pv. vasculorum resistance using the maize recombinant inbred line population Z003 (B73 × CML228). We detected three QTLs for BLS resistance. In addition to the disease resistance QTL, we detected a single QTL for auricle color. We observed significant, yet weak, correlations among BLS severity, levels of pattern-triggered immunity response and leaf flecking. These results will be useful for understanding resistance to X. vasicola pv. vasculorum and mitigating the impact of BLS on maize yields. 
    more » « less
  3. Abstract Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies. 
    more » « less
  4. Maize is a globally important staple that is used as food for human and animal consumption, fuel, and other industrial applications. Pathogens affect all stages of the plant life cycle and every plant organ, and lead to significant yield losses. An integrated strategy incorporating cultural and chemical management practices, as well as development of resistant plant varieties, is needed to prevent yield losses due to plant diseases. Large numbers of breeding material must be screened to develop pathogen-resistant maize varieties. Inoculation methods must be high-throughput to accommodate the large screening experiments. Additionally, there needs to be an extensive understanding of the plant–pathogen interaction to use a targeted biotechnology-based approach, which takes advantage of knowledge of the system to engineer resistance. To evaluate germplasm for breeding and biotechnology approaches, inoculation methods must replicate natural infection, and disease severity must be rated consistently to accurately screen germplasm or gather data on pathogens of interest. Here, we review inoculation and rating methods for Gibberella ear rot, seedling blight caused byGlobisporangium ultimumvar.ultimum, and Goss's wilt that are efficient and high-throughput. We also introduce fluorescence microscopy techniques for leaf samples infected withExserohilum turcicum, the causal agent of northern corn leaf blight. These pathogens all cause significant yield losses, and in particular, Gibberella ear rot is associated with the accumulation of harmful mycotoxins. Understanding how pathogens cause disease and how plants defend against attack is a major goal of maize pathology studies and critical for developing integrated management strategies. 
    more » « less
  5. null (Ed.)
    Abstract Taro (Colocasia esculenta) is a food staple widely cultivated in the humid tropics of Asia, Africa, Pacific and the Caribbean. One of the greatest threats to taro production is Taro Leaf Blight caused by the oomycete pathogen Phytophthora colocasiae. Here we describe a de novo taro genome assembly and use it to analyze sequence data from a Taro Leaf Blight resistant mapping population. The genome was assembled from linked-read sequences (10x Genomics; ∼60x coverage) and gap-filled and scaffolded with contigs assembled from Oxford Nanopore Technology long-reads and linkage map results. The haploid assembly was 2.45 Gb total, with a maximum contig length of 38 Mb and scaffold N50 of 317,420 bp. A comparison of family-level (Araceae) genome features reveals the repeat content of taro to be 82%, >3.5x greater than in great duckweed (Spirodela polyrhiza), 23%. Both genomes recovered a similar percent of Benchmarking Universal Single-copy Orthologs, 80% and 84%, based on a 3,236 gene database for monocot plants. A greater number of nucleotide-binding leucine-rich repeat disease resistance genes were present in genomes of taro than the duckweed, ∼391 vs. ∼70 (∼182 and ∼46 complete). The mapping population data revealed 16 major linkage groups with 520 markers, and 10 quantitative trait loci (QTL) significantly associated with Taro Leaf Blight disease resistance. The genome sequence of taro enhances our understanding of resistance to TLB, and provides markers that may accelerate breeding programs. This genome project may provide a template for developing genomic resources in other understudied plant species. 
    more » « less