skip to main content

Title: Large-size free-standing single-crystal β-Ga 2 O 3 membranes fabricated by hydrogen implantation and lift-off
In this paper, we demonstrated large-size free-standing single-crystal β-Ga 2 O 3 NMs fabricated by the hydrogen implantation and lift-off process directly from MOCVD grown β-Ga 2 O 3 epifilms on native substrates. The optimum implantation conditions were simulated with a Monte-Carlo simulation method to obtain a high hydrogen concentration with a narrow ion distribution at the desired depth. Two as grown β-Ga 2 O 3 samples with different orientations ([100] and [001]) were used to successfully create 1.2 μm thick β-Ga 2 O 3 NMs without any physical damage. These β-Ga 2 O 3 NMs were then transfer-printed onto rigid and flexible substrates such as SiC and polyimide substrates. Various material characterization studies were performed to investigate their crystal quality, surface morphologies, optical properties, mechanical properties, and bandgaps before and after the lift-off and revealed that the good material quality was maintained. This result offers several benefits in that the thickness, doping, and size of β-Ga 2 O 3 NMs can be fully controlled. Moreover, more advanced β-Ga 2 O 3 -based NM structures such as (Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 heterostructure NMs can be directly created from their bulk epitaxy substrates; more » thus this study provides a viable route for the realization of high performance β-Ga 2 O 3 NM-based electronics and optoelectronics that can be built on various substrates and platforms. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
2019753 1810041 1809077
Publication Date:
NSF-PAR ID:
10273768
Journal Name:
Journal of Materials Chemistry C
Volume:
9
Issue:
19
Page Range or eLocation-ID:
6180 to 6186
ISSN:
2050-7526
Sponsoring Org:
National Science Foundation
More Like this
  1. SiC and Ga 2 O 3 are promising wide band gap semiconductors for applications in power electronics because of their high breakdown electric field and normally off operation. However, lack of a suitable dielectric material that can provide high interfacial quality remains a problem. This can potentially lead to high leakage current and conducting loss. In this work, we present a novel atomic layer deposition process to grow epitaxially Mg x Ca 1− x O dielectric layers on 4H-SiC(0001) and β-Ga 2 O 3 $\left( {\bar 201} \right)$ substrates. By tuning the composition of Mg x Ca 1− x O toward the substrate lattice constant, better interfacial epitaxy can be achieved. The interfacial and epitaxy qualities were investigated and confirmed by cross-sectional transmission electron microscopy and X-ray diffraction studies. Mg 0.72 Ca 0.28 O film showed the highest epitaxy quality on 4H-SiC(0001) because of its closest lattice match with the substrate. Meanwhile, highly textured Mg 0.25 Ca 0.75 O films can be grown on β-Ga 2 O 3 $\left( {\bar 201} \right)$ with a preferred orientation of (111).
  2. Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied bymore »high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment.« less
  3. Abstract In this paper, transient delayed rise and fall times for beta gallium oxide ( β -Ga 2 O 3 ) nanomembrane (NM) Schottky barrier diodes (SBDs) formed on four different substrates (diamond, Si, sapphire, and polyimide) were measured using a sub-micron second resolution time-resolved electrical measurement system under different temperature conditions. The devices exhibited noticeably less-delayed turn on/turn off transient time when β -Ga 2 O 3 NM SBDs were built on a high thermal conductive (high- k ) substrate. Furthermore, a relationship between the β -Ga 2 O 3 NM thicknesses under different temperature conditions and their transient characteristics were systematically investigated and verified it using a multiphysics simulator. Overall, our results revealed the impact of various substrates with different thermal properties and different β -Ga 2 O 3 NM thicknesses on the performance of β -Ga 2 O 3 NM-based devices. Thus, the high- k substrate integration strategy will help design future β -Ga 2 O 3 -based devices by maximizing heat dissipation from the β -Ga 2 O 3 layer.
  4. In this work, the structural and electrical properties of metalorganic chemical vapor deposited Si-doped β-(Al x Ga 1−x ) 2 O 3 thin films grown on (010) β-Ga 2 O 3 substrates are investigated as a function of Al composition. The room temperature Hall mobility of 101 cm 2 /V s and low temperature peak mobility (T = 65 K) of 1157 cm 2 /V s at carrier concentrations of 6.56 × 10 17 and 2.30 × 10 17  cm −3 are measured from 6% Al composition samples, respectively. The quantitative secondary ion mass spectroscopy (SIMS) characterization reveals a strong dependence of Si and other unintentional impurities, such as C, H, and Cl concentrations in β-(Al x Ga 1−x ) 2 O 3 thin films, with different Al compositions. Higher Al compositions in β-(Al x Ga 1−x ) 2 O 3 result in lower net carrier concentrations due to the reduction of Si incorporation efficiency and the increase of C and H impurity levels that act as compensating acceptors in β-(Al x Ga 1−x ) 2 O 3 films. Lowering the growth chamber pressure reduces Si concentrations in β-(Al x Ga 1−x ) 2 O 3 films due to the increase of Al compositions as evidenced by comprehensive SIMS and Hallmore »characterizations. Due to the increase of lattice mismatch between the epifilm and substrate, higher Al compositions lead to cracking in β-(Al x Ga 1−x ) 2 O 3 films grown on β-Ga 2 O 3 substrates. The (100) cleavage plane is identified as a major cracking plane limiting the growth of high-quality Si-doped (010) β-(Al x Ga 1−x ) 2 O 3 films beyond the critical thicknesses, which leads to highly anisotropic and inhomogeneous behaviors in terms of conductivity.« less
  5. The hot-wall metalorganic chemical vapor deposition (MOCVD) concept, previously shown to enable superior material quality and high performance devices based on wide bandgap semiconductors, such as Ga(Al)N and SiC, has been applied to the epitaxial growth of β-Ga 2 O 3 . Epitaxial β-Ga 2 O 3 layers at high growth rates (above 1 μm/h), at low reagent flows, and at reduced growth temperatures (740 °C) are demonstrated. A high crystalline quality epitaxial material on a c-plane sapphire substrate is attained as corroborated by a combination of x-ray diffraction, high-resolution scanning transmission electron microscopy, and spectroscopic ellipsometry measurements. The hot-wall MOCVD process is transferred to homoepitaxy, and single-crystalline homoepitaxial β-Ga 2 O 3 layers are demonstrated with a [Formula: see text]01 rocking curve width of 118 arc sec, which is comparable to those of the edge-defined film-fed grown ([Formula: see text]01) β-Ga 2 O 3 substrates, indicative of similar dislocation densities for epilayers and substrates. Hence, hot-wall MOCVD is proposed as a prospective growth method to be further explored for the fabrication of β-Ga 2 O 3 .