The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of themore »
MOCVD Epitaxy of Ultrawide Bandgap β-(Al x Ga 1–x ) 2 O 3 with High-Al Composition on (100) β-Ga 2 O 3 Substrates
More Like this
-
-
In this work, we report a study of the temperature dependent pulsed current voltage and RF characterization of [Formula: see text]-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 hetero-structure FETs (HFETs) before and after silicon nitride (Si 3 N 4 ) passivation. Under sub-microsecond pulsing, a moderate DC-RF dispersion (current collapse) is observed before passivation in gate lag measurements, while no current collapse is observed in the drain lag measurements. The dispersion in the gate lag is possibly attributed to interface traps in the gate–drain access region. DC-RF dispersion did not show any strong dependence on the pulse widths. Temperature dependent RF measurements up to 250 °C do not show degradation in the cutoff frequencies. After Si 3 N 4 deposition at 350 °C, a shift of the threshold voltage is observed which changed the DC characteristics. However, the current collapse is eliminated; at 200 ns pulse widths, a 50% higher current is observed compared to the DC at high drain voltages. No current collapse is observed even at higher temperatures. RF performance of the passivated devices does not show degradation. These results show that ex situ deposited Si 3 N 4 is a potential candidate for passivation ofmore »