skip to main content


Title: Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
Abstract

Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we develop a graph neural network (GNN) model for obtaining an embedding of polycrystalline microstructure which incorporates not only the physical features of individual grains but also their interactions. The embedding is then linked to the target property using a feed-forward neural network. Using the magnetostriction of polycrystalline Tb0.3Dy0.7Fe2alloys as an example, we show that a single GNN model with fixed network architecture and hyperparameters allows for a low prediction error of ~10% over a group of remarkably different microstructures as well as quantifying the importance of each feature in each grain of a microstructure to its magnetostriction. Such a microstructure-graph-based GNN model, therefore, enables an accurate and interpretable prediction of the properties of polycrystalline materials.

 
more » « less
Award ID(s):
2023239
NSF-PAR ID:
10273814
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
7
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Noncoding RNAs (ncRNAs) have recently attracted considerable attention due to their key roles in biology. The ncRNA–proteins interaction (NPI) is often explored to reveal some biological activities that ncRNA may affect, such as biological traits, diseases, etc. Traditional experimental methods can accomplish this work but are often labor-intensive and expensive. Machine learning and deep learning methods have achieved great success by exploiting sufficient sequence or structure information. Graph Neural Network (GNN)-based methods consider the topology in ncRNA–protein graphs and perform well on tasks like NPI prediction. Based on GNN, some pairwise constraint methods have been developed to apply on homogeneous networks, but not used for NPI prediction on heterogeneous networks. In this paper, we construct a pairwise constrained NPI predictor based on dual Graph Convolutional Network (GCN) called NPI-DGCN. To our knowledge, our method is the first to train a heterogeneous graph-based model using a pairwise learning strategy. Instead of binary classification, we use a rank layer to calculate the score of an ncRNA–protein pair. Moreover, our model is the first to predict NPIs on the ncRNA–protein bipartite graph rather than the homogeneous graph. We transform the original ncRNA–protein bipartite graph into two homogenous graphs on which to explore second-order implicit relationships. At the same time, we model direct interactions between two homogenous graphs to explore explicit relationships. Experimental results on the four standard datasets indicate that our method achieves competitive performance with other state-of-the-art methods. And the model is available at https://github.com/zhuoninnin1992/NPIPredict

     
    more » « less
  2. null (Ed.)
    The development of an efficient and powerful machine learning (ML) model for materials property prediction (MPP) remains an important challenge in materials science. While various techniques have been proposed to extract physicochemical features in MPP, graph neural networks (GNN) have also shown very strong capability in capturing effective features for high-performance MPP. Nevertheless, current GNN models do not effectively differentiate the contributions from different atoms. In this paper we develop a novel graph neural network model called GATGNN for predicting properties of inorganic materials. GATGNN is characterized by its composition of augmented graph-attention layers (AGAT) and a global attention layer. The application of AGAT layers and global attention layers respectively learn the local relationship among neighboring atoms and overall contribution of the atoms to the material's property; together making our framework achieve considerably better prediction performance on various tested properties. Through extensive experiments, we show that our method is able to outperform existing state-of-the-art GNN models while it can also provide a measurable insight into the correlation between the atoms and their material property. Our code can found on – https://github.com/superlouis/GATGNN. 
    more » « less
  3. Nuclear magnetic resonance (NMR) is one of the primary techniques used to elucidate the chemical structure, bonding, stereochemistry, and conformation of organic compounds. The distinct chemical shifts in an NMR spectrum depend upon each atom's local chemical environment and are influenced by both through-bond and through-space interactions with other atoms and functional groups. The in silico prediction of NMR chemical shifts using quantum mechanical (QM) calculations is now commonplace in aiding organic structural assignment since spectra can be computed for several candidate structures and then compared with experimental values to find the best possible match. However, the computational demands of calculating multiple structural- and stereo-isomers, each of which may typically exist as an ensemble of rapidly-interconverting conformations, are expensive. Additionally, the QM predictions themselves may lack sufficient accuracy to identify a correct structure. In this work, we address both of these shortcomings by developing a rapid machine learning (ML) protocol to predict 1 H and 13 C chemical shifts through an efficient graph neural network (GNN) using 3D structures as input. Transfer learning with experimental data is used to improve the final prediction accuracy of a model trained using QM calculations. When tested on the CHESHIRE dataset, the proposed model predicts observed 13 C chemical shifts with comparable accuracy to the best-performing DFT functionals (1.5 ppm) in around 1/6000 of the CPU time. An automated prediction webserver and graphical interface are accessible online at http://nova.chem.colostate.edu/cascade/. We further demonstrate the model in three applications: first, we use the model to decide the correct organic structure from candidates through experimental spectra, including complex stereoisomers; second, we automatically detect and revise incorrect chemical shift assignments in a popular NMR database, the NMRShiftDB; and third, we use NMR chemical shifts as descriptors for determination of the sites of electrophilic aromatic substitution. 
    more » « less
  4. Abstract

    We present a phase-field (PF) model to simulate the microstructure evolution occurring in polycrystalline materials with a variation in the intra-granular dislocation density. The model accounts for two mechanisms that lead to the grain boundary migration: the driving force due to capillarity and that due to the stored energy arising from a spatially varying dislocation density. In addition to the order parameters that distinguish regions occupied by different grains, we introduce dislocation density fields that describe spatial variation of the dislocation density. We assume that the dislocation density decays as a function of the distance the grain boundary has migrated. To demonstrate and parameterize the model, we simulate microstructure evolution in two dimensions, for which the initial microstructure is based on real-time experimental data. Additionally, we applied the model to study the effect of a cyclic heat treatment (CHT) on the microstructure evolution. Specifically, we simulated stored-energy-driven grain growth during three thermal cycles, as well as grain growth without stored energy that serves as a baseline for comparison. We showed that the microstructure evolution proceeded much faster when the stored energy was considered. A non-self-similar evolution was observed in this case, while a nearly self-similar evolution was found when the microstructure evolution is driven solely by capillarity. These results suggest a possible mechanism for the initiation of abnormal grain growth during CHT. Finally, we demonstrate an integrated experimental-computational workflow that utilizes the experimental measurements to inform the PF model and its parameterization, which provides a foundation for the development of future simulation tools capable of quantitative prediction of microstructure evolution during non-isothermal heat treatment.

     
    more » « less
  5. Abstract Motivation

    While traditionally utilized for identifying site-specific metabolic activity within a compound to alter its interaction with a metabolizing enzyme, predicting the site-of-metabolism (SOM) is essential in analyzing the promiscuity of enzymes on substrates. The successful prediction of SOMs and the relevant promiscuous products has a wide range of applications that include creating extended metabolic models (EMMs) that account for enzyme promiscuity and the construction of novel heterologous synthesis pathways. There is therefore a need to develop generalized methods that can predict molecular SOMs for a wide range of metabolizing enzymes.

    Results

    This article develops a Graph Neural Network (GNN) model for the classification of an atom (or a bond) being an SOM. Our model, GNN-SOM, is trained on enzymatic interactions, available in the KEGG database, that span all enzyme commission numbers. We demonstrate that GNN-SOM consistently outperforms baseline machine learning models, when trained on all enzymes, on Cytochrome P450 (CYP) enzymes, or on non-CYP enzymes. We showcase the utility of GNN-SOM in prioritizing predicted enzymatic products due to enzyme promiscuity for two biological applications: the construction of EMMs and the construction of synthesis pathways.

    Availability and implementation

    A python implementation of the trained SOM predictor model can be found at https://github.com/HassounLab/GNN-SOM.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less