skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: relativistic spacetime crystals
Periodic space crystals are well established and widely used in physical sciences. Time crystals have been increasingly explored more recently, where time is disconnected from space. Periodic relativistic spacetime crystals on the other hand need to account for the mixing of space and time in special relativity through Lorentz transformation, and have been listed only in 2-dimensions. This work shows that there exists a transformation between the conventional Minkowski spacetime (MS) and what is referred to here as renormalized blended spacetime (RBS); they are shown to be equivalent descriptions of relativistic physics in flat spacetime. There are two elements to this reformulation of MS, namely, blending and renormalization. When observers in two inertial frames adopt each other’s clocks as their own, while retaining their original space coordinates; the observers become blended. This process reformulates the Lorentz boosts into Euclidean rotations while retaining the original spacetime hyperbola describing worldlines of constant spacetime length from the origin. By renormalizing the blended coordinates with an appropriate factor that is a function of the relative velocities between the various frames, the hyperbola is transformed into a Euclidean circle. With these two steps, one obtains the RBS coordinates complete with new light lines, but now with a Euclidean construction. One can now enumerate the RBS point and space groups in various dimensions with their mapping to the well-known space crystal groups. The RBS point group for flat isotropic RBS spacetime is identified to be that of cylinders in various dimensions: mm2 which is that of a rectangle in 2D, (∞⁄m)m which is that of a cylinder in 3D, and that of hypercylinder in 4D. An antisymmetry operation is introduced that can swap between space-like and time-like directions, leading to color spacetime groups. The formalism reveals RBS symmetries that are not readily apparent in the conventional MS formulation. Mathematica® script is provided for plotting the MS and RBS geometries discussed in the work.  more » « less
Award ID(s):
1807768
PAR ID:
10273839
Author(s) / Creator(s):
Editor(s):
Billinge, Simon
Date Published:
Journal Name:
Acta crystallographica
Volume:
A77
ISSN:
0108-7681
Page Range / eLocation ID:
242-256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Time functions with asymptotically hyperbolic geometry play an increasingly important role in many areas of relativity, from computing black hole perturbations to analyzing wave equations. Despite their significance, many of their properties remain underexplored. In this expository article, I discuss hyperbolic time functions by considering the hyperbola as the relativistic analog of a circle in two-dimensional Minkowski space and argue that suitably defined hyperboloidal coordinates are as natural in Lorentzian manifolds as spherical coordinates are in Riemannian manifolds. 
    more » « less
  2. A<sc>bstract</sc> We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Källén-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we recover the Källén-Lehmann decomposition in Minkowski space by taking the flat space limit. Using harmonic analysis and the Wick rotation to Euclidean Anti de Sitter, we derive an inversion formula to compute the spectral densities. Using the inversion formula, we relate the analytic structure of the spectral densities to the late-time boundary operator content. We apply our technical tools to study two-point functions of composite operators in free and weakly coupled theories. In the weakly coupled case, we show how the Källén-Lehmann decomposition is useful to find the anomalous dimensions of the late-time boundary operators. We also derive the Källén-Lehmann representation of two-point functions of spinning primary operators of a Conformal Field Theory on de Sitter. 
    more » « less
  3. A bstract We present an explicit formula for Lorentz boosts and rotations that commute with BMS supertranslations in asymptotically flat spacetimes. Key to the construction is the use of infrared regularizations and of a unitary transformation that makes observables commute with the soft degrees of freedom. We explicitly verify that our charges satisfy the Lorentz algebra and we check that they are consistent with expectations by evaluating them on the supertranslated Minkowski space and on the boosted Kerr black hole. 
    more » « less
  4. Crystal structures are characterized by atomic bases within a primitive unit cell that repeats along a regular lattice throughout 3D space. The periodic and infinite nature of crystals poses unique challenges for geometric graph representation learning. Specifically, constructing graphs that effectively capture the complete geometric information of crystals and handle chiral crystals remains an unsolved and challenging problem. In this paper, we introduce a novel approach that utilizes the periodic patterns of unit cells to establish the lattice-based representation for each atom, enabling efficient and expressive graph representations of crystals. Furthermore, we propose ComFormer, a SE(3) transformer designed specifically for crystalline materials. ComFormer includes two variants: iComFormer that employs invariant geometric descriptors of Euclidean distances and angles, and eComFormer that utilizes equivariant vector representations. Experimental results demonstrate the state-of-the-art predictive accuracy of ComFormer variants on various tasks across three widely-used crystal benchmarks. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS). 
    more » « less
  5. null (Ed.)
    This is a review of selected topics from recent work on symmetrycharges in asymptotically flat spacetime done by the author incollaboration with U. Kol and R. Javadinezhad. First we reinterpret thereality constraint on the boundary graviton as the gauge fixing of a newlocal symmetry, called dual supertranslations. This symmetry extends theBMS group and bears many similarities to the dual (magnetic) gaugesymmetry of electrodynamics. We use this new gauge symmetry to propose anew description of the TAUB-NUT space that does not contain closedtime-like curves. Next we summarize progress towards the definition ofLorentz and super-Lorentz charges that commute with supertranslationsand with the soft graviton mode. 
    more » « less