- Editors:
- Billinge, Simon
- Award ID(s):
- 1807768
- Publication Date:
- NSF-PAR ID:
- 10273839
- Journal Name:
- Acta crystallographica
- Volume:
- A77
- Page Range or eLocation-ID:
- 242-256
- ISSN:
- 0108-7681
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We describe the construction of traversable wormholes with multiple mouths in four spacetime dimensions and discuss associated quantum entanglement. Our wormholes may be traversed between any pair of mouths. In particular, in the three-mouth case they have fundamental group F 2 (the free group on two generators). By contrast, connecting three regions A, B, C in pairs ( AB , BC , and AC ) using three separate wormholes would give fundamental group F 3 . Our solutions are asymptotically flat up to the presence of possible magnetic fluxes or cosmic strings that extend to infinity. The construction begins with a two-mouth traversable wormhole supported by backreaction from quantum fields. Inserting a sufficiently small black hole into its throat preserves traversability between the original two mouths. This black hole is taken to be the mouth of another wormhole connecting the original throat to a new distant region of spacetime. Making the new wormhole traversable in a manner similar to the original two-mouth wormhole provides the desired causal connections. From a dual field theory point of view, when AdS asymptotics are added to our construction, multiparty entanglement may play an important role in the traversability of the resulting wormhole.
-
A bstract Using the fact that flat space with a boundary is related by a Weyl transformation to anti-de Sitter (AdS) space, one may study observables in boundary conformal field theory (BCFT) by placing a CFT in AdS. In addition to correlation functions of local operators, a quantity of interest is the free energy of the CFT computed on the AdS space with hyperbolic ball metric, i.e. with a spherical boundary. It is natural to expect that the AdS free energy can be used to define a quantity that decreases under boundary renormalization group flows. We test this idea by discussing in detail the case of the large N critical O ( N ) model in general dimension d , as well as its perturbative descriptions in the epsilon-expansion. Using the AdS approach, we recover the various known boundary critical behaviors of the model, and we compute the free energy for each boundary fixed point, finding results which are consistent with the conjectured F -theorem in a continuous range of dimensions. Finally, we also use the AdS setup to compute correlation functions and extract some of the BCFT data. In particular, we show that using the bulk equations of motion,more »
-
ABSTRACT We present a new moment-based energy-integrated neutrino transport code for neutron star merger simulations in general relativity. In the merger context, ours is the first code to include Doppler effects at all orders in υ/c, retaining all non-linear neutrino–matter coupling terms. The code is validated with a stringent series of tests. We show that the inclusion of full neutrino–matter coupling terms is necessary to correctly capture the trapping of neutrinos in relativistically moving media, such as in differentially rotating merger remnants. We perform preliminary simulations proving the robustness of the scheme in simulating ab-initio mergers to black hole collapse and long-term neutron star remnants up to ${\sim }70\,$ ms. The latter is the longest dynamical space-time, 3D, general relativistic simulations with full neutrino transport to date. We compare results obtained at different resolutions and using two different closures for the moment scheme. We do not find evidences of significant out-of-thermodynamic equilibrium effects, such as bulk viscosity, on the post-merger dynamics or gravitational wave emission. Neutrino luminosities and average energies are in good agreement with theory expectations and previous simulations by other groups using similar schemes. We compare dynamical and early wind ejecta properties obtained with M1 and with ourmore »
-
Abstract We present a formulation and numerical algorithm to extend the scheme for gray radiation magnetohydrodynamics (MHD) developed by Jiang to include the frequency dependence via the multigroup approach. The entire frequency space can be divided into an arbitrary number of groups in the lab frame, and we follow the time-dependent evolution of frequency-integrated specific intensities along discrete rays inside each group. Spatial transport of photons is done in the lab frame while all the coupling terms are solved in the fluid rest frame. Lorentz transformation is used to connect different frames. The radiation transport equation is solved fully implicitly in time while the MHD equations are evolved explicitly so that time step is not limited by the speed of light. A finite volume approach is used for transport in both spatial and frequency spaces to conserve the radiation energy density and momentum. The algorithm includes photon absorption, electron scattering, as well as Compton scattering, which is calculated by solving the Kompaneets equation. The algorithm is accurate for a wide range of optical depth conditions and can handle both radiation-pressure- and gas-pressure-dominated flows. It works for both Cartesian and curvilinear coordinate systems with adaptive mesh refinement. We provide a varietymore »
-
SUMMARY Within the field of seismic modelling in anisotropic media, dynamic ray tracing is a powerful technique for computation of amplitude and phase properties of the high-frequency Green’s function. Dynamic ray tracing is based on solving a system of Hamilton–Jacobi perturbation equations, which may be expressed in different 3-D coordinate systems. We consider two particular coordinate systems; a Cartesian coordinate system with a fixed origin and a curvilinear ray-centred coordinate system associated with a reference ray. For each system we form the corresponding 6-D phase spaces, which encapsulate six degrees of freedom in the variation of position and momentum. The formulation of (conventional) dynamic ray tracing in ray-centred coordinates is based on specific knowledge of the first-order transformation between Cartesian and ray-centred phase-space perturbations. Such transformation can also be used for defining initial conditions for dynamic ray tracing in Cartesian coordinates and for obtaining the coefficients involved in two-point traveltime extrapolation. As a step towards extending dynamic ray tracing in ray-centred coordinates to higher orders we establish detailed information about the higher-order properties of the transformation between the Cartesian and ray-centred phase-space perturbations. By numerical examples, we (1) visualize the validity limits of the ray-centred coordinate system, (2) demonstrate themore »