We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
We obtain a new relation between the distributions
- Award ID(s):
- 1664617
- NSF-PAR ID:
- 10273909
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Probability Theory and Related Fields
- Volume:
- 182
- Issue:
- 1-2
- ISSN:
- 0178-8051
- Format(s):
- Medium: X Size: p. 481-530
- Size(s):
- p. 481-530
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ c polarised and$$ \mu ^{+}$$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{-}$$ $$c^2$$ 17.0 GeV/$$< W<$$ , 1.0 (GeV/$$c^2$$ c )$$^2$$ 10.0 (GeV/$$< Q^2<$$ c ) and 0.01 (GeV/$$^2$$ c )$$^2$$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ c ) . Here,$$^2$$ W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ the transverse momentum of the$$p_{\textrm{T}}$$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ s -channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive production.$$\rho ^0$$ -
Abstract We explore properties of the family sizes arising in a linear birth process with immigration (BI). In particular, we study the correlation of the number of families observed during consecutive disjoint intervals of time. Letting
S (a ,b ) be the number of families observed in (a ,b ), we study the expected sample variance and its asymptotics forp consecutive sequential samples , for$$S_p =(S(t_0,t_1),\dots , S(t_{p-1},t_p))$$ . By conditioning on the sizes of the samples, we provide a connection between$$0=t_0 and$$S_p$$ p sequential samples of sizes , drawn from a single run of a Chinese Restaurant Process. Properties of the latter were studied in da Silva et al. (Bernoulli 29:1166–1194, 2023.$$n_1,n_2,\dots ,n_p$$ https://doi.org/10.3150/22-BEJ1494 ). We show how the continuous-time framework helps to make asymptotic calculations easier than its discrete-time counterpart. As an application, for a specific choice of , where the lengths of intervals are logarithmically equal, we revisit Fisher’s 1943 multi-sampling problem and give another explanation of what Fisher’s model could have meant in the world of sequential samples drawn from a BI process.$$t_1,t_2,\dots , t_p$$ -
Abstract We study the singular set in the thin obstacle problem for degenerate parabolic equations with weight
for$$|y|^a$$ . Such problem arises as the local extension of the obstacle problem for the fractional heat operator$$a \in (-1,1)$$ for$$(\partial _t - \Delta _x)^s$$ . Our main result establishes the complete structure and regularity of the singular set of the free boundary. To achieve it, we prove Almgren-Poon, Weiss, and Monneau type monotonicity formulas which generalize those for the case of the heat equation ($$s \in (0,1)$$ ).$$a=0$$ -
Abstract A search for exotic decays of the Higgs boson (
) with a mass of 125$$\text {H}$$ to a pair of light pseudoscalars$$\,\text {Ge}\hspace{-.08em}\text {V}$$ is performed in final states where one pseudoscalar decays to two$$\text {a}_{1} $$ quarks and the other to a pair of muons or$${\textrm{b}}$$ leptons. A data sample of proton–proton collisions at$$\tau $$ corresponding to an integrated luminosity of 138$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\,\text {fb}^{-1}$$ ) on the Higgs boson branching fraction to$$\text {CL}$$ and to$$\upmu \upmu \text{ b } \text{ b } $$ via a pair of$$\uptau \uptau \text{ b } \text{ b },$$ s. The limits depend on the pseudoscalar mass$$\text {a}_{1} $$ and are observed to be in the range (0.17–3.3)$$m_{\text {a}_{1}}$$ and (1.7–7.7)$$\times 10^{-4}$$ in the$$\times 10^{-2}$$ and$$\upmu \upmu \text{ b } \text{ b } $$ final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$$\uptau \uptau \text{ b } \text{ b } $$ at 95%$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$ , with$$\text {CL}$$ being a muon or a$$\ell $$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction$$\uptau $$ are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ values above 0.23 are excluded at 95%$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ for$$\text {CL}$$ values between 15 and 60$$m_{\text {a}_{1}}$$ .$$\,\text {Ge}\hspace{-.08em}\text {V}$$ -
Abstract The elliptic flow
of$$(v_2)$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0}$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$${\textrm{D}}^{0})$$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ from their hadronic decay$$(|y|<0.8)$$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ GeV/$$2< p_{\textrm{T}} < 12$$ c . The result indicates a positive for non-prompt$$v_2$$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ . The non-prompt$$\sigma $$ -meson$${{\textrm{D}}^{0}}$$ is lower than that of prompt non-strange D mesons with 3.2$$v_2$$ significance in$$\sigma $$ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$