We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
We obtain a new relation between the distributions
 Award ID(s):
 1664617
 NSFPAR ID:
 10273909
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 Probability Theory and Related Fields
 Volume:
 182
 Issue:
 12
 ISSN:
 01788051
 Format(s):
 Medium: X Size: p. 481530
 Size(s):
 p. 481530
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ ${\rho}^{0}$c polarised and$$ \mu ^{+}$$ ${\mu}^{+}$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{}$$ ${\mu}^{}$$$c^2$$ ${c}^{2}$ 17.0 GeV/$$< W<$$ $<W<$ , 1.0 (GeV/$$c^2$$ ${c}^{2}$c )$$^2$$ ${}^{2}$ 10.0 (GeV/$$< Q^2<$$ $<{Q}^{2}<$c ) and 0.01 (GeV/$$^2$$ ${}^{2}$c )$$^2$$ ${}^{2}$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ $<{p}_{\text{T}}^{2}<$c ) . Here,$$^2$$ ${}^{2}$W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ ${Q}^{2}$ the transverse momentum of the$$p_{\textrm{T}}$$ ${p}_{\text{T}}$ meson with respect to the virtualphoton direction. The measured nonzero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ${\rho}^{0}$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ ${\gamma}_{T}^{\ast}\to {V}_{L}^{}$s channel helicity conservation. Additionally, we observe a dominant contribution of naturalparityexchange transitions and a very small contribution of unnaturalparityexchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a modeldependent way the role of parton helicityflip GPDs in exclusive production.$$\rho ^0$$ ${\rho}^{0}$ 
Abstract We explore properties of the family sizes arising in a linear birth process with immigration (BI). In particular, we study the correlation of the number of families observed during consecutive disjoint intervals of time. Letting
S (a ,b ) be the number of families observed in (a ,b ), we study the expected sample variance and its asymptotics forp consecutive sequential samples , for$$S_p =(S(t_0,t_1),\dots , S(t_{p1},t_p))$$ ${S}_{p}=(S({t}_{0},{t}_{1}),\cdots ,S({t}_{p1},{t}_{p}))$ . By conditioning on the sizes of the samples, we provide a connection between$$0=t_0 $0={t}_{0}<{t}_{1}<\cdots <{t}_{p}$ and$$S_p$$ ${S}_{p}$p sequential samples of sizes , drawn from a single run of a Chinese Restaurant Process. Properties of the latter were studied in da Silva et al. (Bernoulli 29:1166–1194, 2023.$$n_1,n_2,\dots ,n_p$$ ${n}_{1},{n}_{2},\cdots ,{n}_{p}$https://doi.org/10.3150/22BEJ1494 ). We show how the continuoustime framework helps to make asymptotic calculations easier than its discretetime counterpart. As an application, for a specific choice of , where the lengths of intervals are logarithmically equal, we revisit Fisher’s 1943 multisampling problem and give another explanation of what Fisher’s model could have meant in the world of sequential samples drawn from a BI process.$$t_1,t_2,\dots , t_p$$ ${t}_{1},{t}_{2},\cdots ,{t}_{p}$ 
Abstract We study the singular set in the thin obstacle problem for degenerate parabolic equations with weight
for$$y^a$$ ${\lefty\right}^{a}$ . Such problem arises as the local extension of the obstacle problem for the fractional heat operator$$a \in (1,1)$$ $a\in (1,1)$ for$$(\partial _t  \Delta _x)^s$$ ${({\partial}_{t}{\Delta}_{x})}^{s}$ . Our main result establishes the complete structure and regularity of the singular set of the free boundary. To achieve it, we prove AlmgrenPoon, Weiss, and Monneau type monotonicity formulas which generalize those for the case of the heat equation ($$s \in (0,1)$$ $s\in (0,1)$ ).$$a=0$$ $a=0$ 
Abstract The elliptic flow
of$$(v_2)$$ $\left({v}_{2}\right)$ mesons from beautyhadron decays (nonprompt$${\textrm{D}}^{0}$$ ${\text{D}}^{0}$ was measured in midcentral (30–50%) Pb–Pb collisions at a centreofmass energy per nucleon pair$${\textrm{D}}^{0})$$ ${\text{D}}^{0})$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ $\sqrt{{s}_{\text{NN}}}=5.02$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ ${\text{D}}^{0}$ from their hadronic decay$$(y<0.8)$$ $\left(\righty<0.8)$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^\uppi ^+}$$ ${D}^{0}\to {K}^{}{\pi}^{+}$ GeV/$$2< p_{\textrm{T}} < 12$$ $2<{p}_{\text{T}}<12$c . The result indicates a positive for nonprompt$$v_2$$ ${v}_{2}$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ ${\text{D}}^{0}$ . The nonprompt$$\sigma $$ $\sigma $ meson$${{\textrm{D}}^{0}}$$ ${\text{D}}^{0}$ is lower than that of prompt nonstrange D mesons with 3.2$$v_2$$ ${v}_{2}$ significance in$$\sigma $$ $\sigma $ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ $2<{p}_{\text{T}}<8\phantom{\rule{0ex}{0ex}}\text{GeV}/c$ of beautydecay electrons. Theoretical calculations of beautyquark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$ ${v}_{2}$ 
Abstract We perform pathintegral molecular dynamics (PIMD), ringpolymer MD (RPMD), and classical MD simulations of H
O and D$$_2$$ ${}_{2}$ O using the qTIP4P/F water model over a wide range of temperatures and pressures. The density$$_2$$ ${}_{2}$ , isothermal compressibility$$\rho (T)$$ $\rho \left(T\right)$ , and selfdiffusion coefficients$$\kappa _T(T)$$ ${\kappa}_{T}\left(T\right)$D (T ) of H O and D$$_2$$ ${}_{2}$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$_2$$ ${}_{2}$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$C_P(T)$$ ${C}_{P}\left(T\right)$ O and D$$_2$$ ${}_{2}$ O exhibit a liquidliquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ ${}_{2}$ O and D$$_2$$ ${}_{2}$ O can be fitted remarkably well using the TwoStateEquationofState (TSEOS). Using the TSEOS, we estimate that the LLCP for qTIP4P/F H$$_2$$ ${}_{2}$ O, from PIMD simulations, is located at$$_2$$ ${}_{2}$ MPa,$$P_c = 167 \pm 9$$ ${P}_{c}=167\pm 9$ K, and$$T_c = 159 \pm 6$$ ${T}_{c}=159\pm 6$ g/cm$$\rho _c = 1.02 \pm 0.01$$ ${\rho}_{c}=1.02\pm 0.01$ . Isotope substitution effects are important; the LLCP location in qTIP4P/F D$$^3$$ ${}^{3}$ O is estimated to be$$_2$$ ${}_{2}$ MPa,$$P_c = 176 \pm 4$$ ${P}_{c}=176\pm 4$ K, and$$T_c = 177 \pm 2$$ ${T}_{c}=177\pm 2$ g/cm$$\rho _c = 1.13 \pm 0.01$$ ${\rho}_{c}=1.13\pm 0.01$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of qTIP4P/F water,$$^3$$ ${}^{3}$ MPa,$$P_c = 203 \pm 4$$ ${P}_{c}=203\pm 4$ K, and$$T_c = 175 \pm 2$$ ${T}_{c}=175\pm 2$ g/cm$$\rho _c = 1.03 \pm 0.01$$ ${\rho}_{c}=1.03\pm 0.01$ ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$^3$$ ${}^{3}$ for D$$T_c$$ ${T}_{c}$ O and, particularly, H$$_2$$ ${}_{2}$ O suggest that improved water models are needed for the study of supercooled water.$$_2$$ ${}_{2}$