skip to main content


Title: Urban specialization reduces habitat connectivity by a highly mobile wading bird
Abstract Background Mobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats. More generally, understanding animal movement patterns in urban areas can help predict how urban expansion will affect the roles of highly mobile animals in ecological processes. Methods Here, we examined movements by a seasonally nomadic wading bird, the American white ibis ( Eudocimus albus ), in South Florida, USA. White ibis are colonial wading birds that forage on aquatic prey; in recent years, some ibis have shifted their behavior to forage in urban parks, where they are fed by people. We used a spatial network approach to investigate how individual movement patterns influence connectivity between urban and non-urban sites. We built a network of habitat connectivity using GPS tracking data from ibis during their non-breeding season and compared this network to simulated networks that assumed individuals moved indiscriminately with respect to habitat type. Results We found that the observed network was less connected than the simulated networks, that urban-urban and natural-natural connections were strong, and that individuals using urban sites had the least-variable habitat use. Importantly, the few ibis that used both urban and natural habitats contributed the most to connectivity. Conclusions Habitat specialization in urban-acclimated wildlife could reduce the exchange of propagules and nutrients between urban and natural areas, which has consequences both for beneficial effects of connectivity such as gene flow and for detrimental effects such as the spread of contaminants or pathogens.  more » « less
Award ID(s):
1754392
NSF-PAR ID:
10274212
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Movement Ecology
Volume:
8
Issue:
1
ISSN:
2051-3933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lakes can be important to stream dwelling fishes, yet how individuals exploit habitat heterogeneity across complex stream‐lake networks is poorly understood. Furthermore, despite growing awareness that intermittent streams are widely used by fish, studies documenting the use of seasonally accessible lakes remain scarce. We studied Arctic grayling (Thymallus arcticus) in a small seasonally flowing (June–October) stream‐lake network in Alaska using PIT telemetry. Overall, 70% of fish visited two lakes, 8% used a single lake, and 22% used only stream reaches. We identified five distinct behavioural patterns that differed in dominant macrohabitat used (deep lake, shallow lake or stream reaches), entry day into the network and mobility. Some juvenile fish spent the entire summer in a shallow seasonally frozen lake (average 71 days), whereas others demonstrated prospecting behaviour and only entered the stream channel briefly in September. Another group included adult and juvenile fish that were highly mobile, moving up to 27 km while in the 3‐km stream‐lake network, and used stream reaches extensively (average 59 days). Lentic and lotic habitats served differing roles for individuals, some fish occupied stream reaches as summer foraging habitat, and other individuals used them as migration corridors to access lakes. Our study emphasises the importance of considering stream‐lake connectivity in stream fish assessments, even to shallow seasonally frozen habitats not widely recognised as important. Furthermore, we demonstrate that individuals may use temporary aquatic habitats in complex and changing ways across ontogeny that are not captured by typical classifications of fish movement behaviour.

     
    more » « less
  2. Abstract Background Global increases in human activity threaten connectivity of animal habitat and populations. Protection and restoration of wildlife habitat and movement corridors require robust models to forecast the effects of human activity on movement behaviour, resource selection, and connectivity. Recent research suggests that animal resource selection and responses to human activity depend on their behavioural movement state, with increased tolerance for human activity in fast states of movement. Yet, few studies have incorporated state-dependent movement behaviour into analyses of Merriam connectivity, that is individual-based metrics of connectivity that incorporate landscape structure and movement behaviour. Methods We assessed the cumulative effects of anthropogenic development on multiple movement processes including movement behaviour, resource selection, and Merriam connectivity. We simulated movement paths using hidden Markov movement models and step selection functions to estimate habitat use and connectivity for three landscape scenarios: reference conditions with no anthropogenic development, current conditions, and future conditions with a simulated expansion of towns and recreational trails. Our analysis used 20 years of grizzly bear ( Ursus arctos ) and gray wolf ( Canis lupus ) movement data collected in and around Banff National Park, Canada. Results Carnivores increased their speed of travel near towns and areas of high trail and road density, presumably to avoid encounters with people. They exhibited stronger avoidance of anthropogenic development when foraging and resting compared to travelling and during the day compared to night. Wolves exhibited stronger avoidance of anthropogenic development than grizzly bears. Current development reduced the amount of high-quality habitat between two mountain towns by more than 35%. Habitat degradation constrained movement routes around towns and was most pronounced for foraging and resting behaviour. Current anthropogenic development reduced connectivity from reference conditions an average of 85%. Habitat quality and connectivity further declined under a future development scenario. Conclusions Our results highlight the cumulative effects of anthropogenic development on carnivore movement behaviour, habitat use, and connectivity. Our strong behaviour-specific responses to human activity suggest that conservation initiatives should consider how proposed developments and restoration actions would affect where animals travel and how they use the landscape. 
    more » « less
  3. Abstract

    Apex predators are important indicators of intact natural ecosystems. They are also sensitive to urbanization because they require broad home ranges and extensive contiguous habitat to support their prey base. Pumas (Puma concolor) can persist near human developed areas, but urbanization may be detrimental to their movement ecology, population structure, and genetic diversity. To investigate potential effects of urbanization in population connectivity of pumas, we performed a landscape genomics study of 130 pumas on the rural Western Slope and more urbanized Front Range of Colorado, USA. Over 12,000 single nucleotide polymorphisms (SNPs) were genotyped using double‐digest, restriction site‐associated DNA sequencing (ddRADseq). We investigated patterns of gene flow and genetic diversity, and tested for correlations between key landscape variables and genetic distance to assess the effects of urbanization and other landscape factors on gene flow. Levels of genetic diversity were similar for the Western Slope and Front Range, but effective population sizes were smaller, genetic distances were higher, and there was more admixture in the more urbanized Front Range. Forest cover was strongly positively associated with puma gene flow on the Western Slope, while impervious surfaces restricted gene flow and more open, natural habitats enhanced gene flow on the Front Range. Landscape genomic analyses revealed differences in puma movement and gene flow patterns in rural versus urban settings. Our results highlight the utility of dense, genome‐scale markers to document subtle impacts of urbanization on a wide‐ranging carnivore living near a large urban center.

     
    more » « less
  4. Abstract

    Rich pollinator assemblages are documented in some cities despite habitat fragmentation and degradation, suggesting that urban areas have potential as pollinator refuges. To inform urban bee conservation, we assessed local‐ and landscape‐scale drivers of bee community composition and foraging within vacant lots of Cleveland, Ohio, USA. Cleveland is a shrinking city, a type of urban area that has an over‐abundance of vacated greenspaces as a result of population loss and subsequent demolition of abandoned infrastructure. As such, Cleveland represents over 350 post‐industrial cities worldwide that are all promising locations for bee conservation.

    Across a network of 56 residential vacant lots (each ~30 m × 12 m), we established seven unique habitats, including seeded native prairies, to investigate how vegetation management and landscape context at a 1,500 m radius influenced urban bee communities. We assessed the distribution of several bee functional traits, diversity and abundance with pan and malaise traps. Foraging frequency was determined with plant–pollinator interaction networks derived from vacuum collections of bees at flowers.

    We observed higher bee richness and increased abundance of smaller sized bees as the size of surrounding greenspace patches increased within a 1,500 m radius landscape buffer. Within habitats, seeded treatments had no effect on bees but greater plant biomass and shorter vegetation were correlated with increased bee richness and abundance. Plant–pollinator interaction networks were dominated by spontaneous non‐native vegetation, illustrating that this forage supports urban bees.

    Synthesis and applications. Our study indicates that proximity to larger greenspaces within an urban landscape promotes overall bee richness and increased occurrence of smaller bee species within residential vacant lots. While we did not observe our seeded native plants enhancing the bee community, native wildflowers were still establishing during the study and may have a greater influence when blooming at higher densities. Importantly, spontaneous non‐native vegetation provided the majority of urban bee's forage. Thus, vacant land that is minimally managed and vegetated with what many consider undesirable ‘weeds’ provides valuable habitat for bee conservation in cities.

     
    more » « less
  5. Summary

    Urbanization and other human modifications of the landscape may indirectly affect disease dynamics by altering host behavior in ways that influence pathogen transmission. Few opportunities arise to investigate behaviorally mediated effects of human habitat modification in natural host–pathogen systems, but we provide a potential example of this phenomenon in banded mongooses (Mungos mungo), a social mammal. Our banded mongoose study population in Botswana is endemically infected with a novelMycobacterium tuberculosiscomplex pathogen,M. mungi, that primarily invades the mongoose host through the nasal planum and breaks in the skin. In this system, several study troops have access to human garbage sites and other modified landscapes for foraging. Banded mongooses in our study site (N = 4 troops, ~130 individuals) had significantly higher within‐troop aggression levels when foraging in garbage compared to other foraging habitats. Second, monthly rates of aggression were a significant predictor of monthly number of injuries in troops. Finally, injured individuals had a 75% incidence of clinical tuberculosis (TB) compared to a 0% incidence in visibly uninjured mongooses during the study period. Our data suggest that mongoose troops that forage in garbage may be at greater risk of acquiringTBby incurring injuries that may allow for pathogen invasion. Our study suggests the need to consider the indirect effects of garbage on behavior and wildlife health when developing waste management approaches in human‐modified areas.

     
    more » « less