skip to main content


Title: Long Distance Seed Dispersal by Forest Elephants
By dispersing seeds long distances, large, fruit-eating animals influence plant population spread and community dynamics. After fruit consumption, animal gut passage time and movement determine seed dispersal patterns and distances. These, in turn, are influenced by extrinsic, environmental variables and intrinsic, individual-level variables. We simulated seed dispersal by forest elephants ( Loxodonta cyclotis ) by integrating gut passage data from wild elephants with movement data from 96 individuals. On average, elephants dispersed seeds 5.3 km, with 89% of seeds dispersed farther than 1 km. The longest simulated seed dispersal distance was 101 km, with an average maximum dispersal distance of 40.1 km. Seed dispersal distances varied among national parks, perhaps due to unmeasured environmental differences such as habitat heterogeneity and configuration, but not with human disturbance or habitat openness. On average, male elephants dispersed seeds farther than females. Elephant behavioral traits strongly influenced dispersal distances, with bold, exploratory elephants dispersing seeds 1.1 km farther than shy, idler elephants. Protection of forest elephants, particularly males and highly mobile, exploratory individuals, is critical to maintaining long distance seed dispersal services that shape plant communities and tropical forest habitat.  more » « less
Award ID(s):
1845649
NSF-PAR ID:
10338503
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Orangutans are large-bodied frugivores predicted to be important seed dispersers, however little is known about their seed dispersal effectiveness. To understand wild Bornean orangutan (Pongo pygmaeus wurmbii) seed dispersal effectiveness, we measured the quantity of seeds dispersed, and we considered the quality of dispersal by measuring germination rates of gut-passed and control seeds, gut transit times, and dispersal distances. Research was conducted in Gunung Palung National Park, Borneo, Indonesia (August 2018 to August 2019). We systematically collected orangutan fecal samples, feeding behavior, and GPS tracks during consecutive full-day focal follows. We sieved 549 fecal samples collected from 36 orangutans to count and identify seeds (>2mm). Out of the fecal samples collected, 413 (75.2%) contained seeds. A total of 24 genera were dispersed via endozoochory. Orangutan fecal samples contained a mean of 1.17 genera (range 0-7). Germination experiments were conducted with orangutan defecated seeds and seeds from fruit. A significantly higher percent of orangutan defecated seeds germinated for 5 out of 6 genera than control seeds with pulp (p<0.01). A significantly higher percent of orangutan defecated seeds germinated for 3 out of 6 genera compared to control seeds without pulp (p<0.01). Gut transit times in wild orangutans ranged from 39.5 to 87 hours (n=6). Finally, we modeled seed dispersal distances using orangutan movement tracks (n= 30) with gut passage durations of 45 and 60 hours. Gut retention times of 45 hours resulted in a mean dispersal distance of 507 ± 123m (range 69 - 1341), and 60 hours resulted in a mean distance of 592 ± 115m (range 83 - 1260). We conclude orangutans are effective seed dispersers with similar efficacy to other great apes. Orangutans disperse a wide variety of genera over medium to long distances and gut passed seeds germinate at higher rates compared with controls. Keywords: Ecology, Seed dispersal effectiveness, Movement, Tropical, Asia Funders: National Science Foundation (BCS-1638823); National Geographic Society; US Fish and Wildlife Services (F19AP00798; F18AP00898); Disney Wildlife Conservation Fund 
    more » « less
  2. Orangutans consume large quantities of ripe fruit and disperse intact seeds over wide areas. However, few studies have quantified seed dispersal in orangutans (Galdikas 1982; Nielsen et al. 2012). We hypothesized that orangutans are effective seed dispersers. This was tested by identifying, measuring and counting seeds in orangutan feces and recording fecal coordinates to determine seed spatial distribution patterns. Orangutan feces were collected opportunistically from March- September 2015 at the Tuanan Research Station (n=97) and from July- August 2016 at the Cabang Panti Research Station in Gunung Palung National Park, Indonesia (n=98). The feces were sieved, seeds were counted, and seed morphotypes were identified in at least 96% of fecal samples. Flanged males, unflanged males, adult females, and juveniles independent enough from their mother to allow for fecal collection, were all observed dispersing seeds. Four fruit genera were dispersed at Cabang Panti and nine fruit genera were dispersed at Tuanan. At Cabang Panti, the largest intact seed size recorded was 2.29cm in length and the smallest seeds dispersed were less than 1mm Ficus seeds. At Tuanan, 31% of fecal samples had 2 or more genera, 42% had 1 genera, and 26% had no seeds. We used descriptive GIS to describe the spatial distribution of the dispersed seeds. We concluded that orangutans have an important role in fruit tree recruitment. They disperse intact seeds of varying sizes and disperse several different genera of seeds. Future research will measure seed dispersal distances and orangutan gut-passage rates to establish the orangutan seed shadow. Funders include the National Geographic Society, the Leakey Foundation, the US Fish and Wildlife Service, United States Agency for International Development, and the National Science Foundation (BCS-0936199). 
    more » « less
  3. Orangutans are large-bodied frugivores predicted to be effective seed dispersers. We studied Bornean orangutan (Pongo pygmaeus wurmbii) seed dispersal effectiveness, by measuring the quantity of seeds dispersed and the quality of dispersal in Gunung Palung National Park, Borneo, Indonesia (August 2018 to August 2019). For dispersal quality we conducted germination experiments, measured germination rates, and modeled dispersal distances. We systematically collected orangutan fecal samples, feeding behavior, and GPS tracks during focal follows. We sieved 549 fecal samples collected from 36 orangutans and identified the seeds, and of the fecal samples collected 75.2% contained seeds. A total of 24 genera were dispersed via endozoochory. Germination experiments were conducted with orangutan defecated seeds and seeds from fruits. A significantly higher percent of orangutan defecated seeds germinated for 5 out of 6 genera than control seeds with pulp (p<0.01). A significantly higher percent of orangutan defecated seeds germinated for 3 out of 6 genera compared to control seeds without pulp (p<0.01). Gut transit times in wild orangutans ranged from 39.5 to 87 hours. Finally, we modeled seed dispersal distances using orangutan movement tracks (n= 30) with gut passage durations of 45 and 60 hours. Gut retention times of 45 hours resulted in a mean dispersal distance of 507 ± 123m, and 60 hours resulted in a mean distances of 592 ± 115m. We conclude orangutans are effective seed dispersers, as orangutans disperse a wide variety of genera over medium to long distances and defecated seeds exhibit high germinability. Orangutans are large-bodied frugivores predicted to be effective seed dispersers. We studied Bornean orangutan (Pongo pygmaeus wurmbii) seed dispersal effectiveness, by measuring the quantity of seeds dispersed and the quality of dispersal in Gunung Palung National Park, Borneo, Indonesia (August 2018 to August 2019). For dispersal quality we conducted germination experiments, measured germination rates, and modeled dispersal distances. We systematically collected orangutan fecal samples, feeding behavior, and GPS tracks during focal follows. We sieved 549 fecal samples collected from 36 orangutans and identified the seeds, and of the fecal samples collected 75.2% contained seeds. A total of 24 genera were dispersed via endozoochory. Germination experiments were conducted with orangutan defecated seeds and seeds from fruits. A significantly higher percent of orangutan defecated seeds germinated for 5 out of 6 genera than control seeds with pulp (p<0.01). A significantly higher percent of orangutan defecated seeds germinated for 3 out of 6 genera compared to control seeds without pulp (p<0.01). Gut transit times in wild orangutans ranged from 39.5 to 87 hours. Finally, we modeled seed dispersal distances using orangutan movement tracks (n= 30) with gut passage durations of 45 and 60 hours. Gut retention times of 45 hours resulted in a mean dispersal distance of 507 ± 123m, and 60 hours resulted in a mean distances of 592 ± 115m. We conclude orangutans are effective seed dispersers, as orangutans disperse a wide variety of genera over medium to long distances and defecated seeds exhibit high germinability. Funders: National Science Foundation (BCS-1638823); National Geographic Society; US Fish and Wildlife Services (F19AP00798; F18AP00898); Disney Wildlife Conservation Fund 
    more » « less
  4. Abstract

    Dispersal is one of the primary mechanisms by which organisms adapt to spatial and temporal variation in the environment. Theory predicts that increasing spatiotemporal variation drives selection for offspring dispersal away from their natal habitat and one another. However, due to inherent difficulties in measuring dispersal in plant systems, there are few empirical tests of the extent to which this hypothesis can explain variation in seed dispersal strategies.

    In this study, we characterized and compared the dispersal patterns of three closely related plant species that segregate across gradients in spatiotemporal variation in seasonal wetlands.

    We tracked individual seeds as they dispersed in their natural habitats to measure seed dispersal distance (the distance travelled from the maternal plant) and inter‐seed spread (distances between dispersed seeds) and to identify the plant traits causing within‐species variation in seed dispersal. We also evaluated the seed traits causing within‐species variation in seed flight distance and terminal velocity in a wind tunnel and a drop tube, respectively.

    We found that average seed dispersal distance was lowest in the species that occupies the most spatiotemporally variable habitat, contradicting our predictions; however, inter‐seed spread was lowest in the species from the least variable habitat, which aligned with our expectations.

    The maternal plant and seed traits explaining intraspecific variation in seed dispersal varied among species as well as the method used to measure dispersal potential. Two traits had non‐intuitive effects on dispersal, including pappus size, which reduced seed flight distance in two of the focal taxa.

    Overall, our results indicate that the differences we detected in seed dispersal among three closely related plant taxa can be only partially explained by current patterns of environmental variability in their respective habitats and that the traits driving within‐species variation in seed dispersal can evolve rapidly and change with the environmental context in which they are measured.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract

    Pioneer trees with fleshy fruits are typically planted in restoration projects to attract frugivores as a mean to increase dispersal and accelerate forest regeneration. However, differences in fruit traits of pioneer trees can potentially influence dispersal and their restoration outcomes.

    Here we investigated the effects of bird and plant traits, and distance to forest fragments, on the seed rain using a tree‐planting experiment replicated in 12 deforested sites in Brazil. Factors were fruit traits of pioneer trees (wind‐dispersed, bird‐dispersed with lipids or with carbohydrates and controls) and distance (10, 50, 300 m) from forest fragments.

    We found that density and richness of birds and seeds decreased exponentially with distance from fragments, yet these effects were minor compared to the effects of fruit traits on the structure of the seed rain.

    Overall, plots with fleshy fruited pioneers attracted much greater bird activity and seed dispersal than plots with wind‐dispersal pioneers and the controls. For instance, plots with carbohydrate‐rich fruits received more than twice the average species richness and density of birds and seeds of plots with lipid‐rich pioneer trees, surpassing wind‐dispersed pioneers by more than 80%, and controls by over 90%. Furthermore, the fruit trait treatments resulted in morphological shifts in the average traits of visiting birds. Significant differences in bill gape and flight capacities (wing‐loading) were associated with the differences in the seed rain associated with each treatment.

    Synthesis and applications. Understanding how trait‐matching processes mediating mutualistic seed dispersal by frugivores interact with distance‐dependent dispersal limitation on deforested tropical landscapes is critical for improving forest restoration efforts. This is especially relevant in the context of applied nucleation. As shown here, avian seed dispersal can thus be manipulated in restoration projects in order to increase connectivity and speed up forest recovery and the provision of the multiple ecosystem services that follow forest succession.

     
    more » « less