Orangutans are large-bodied frugivores predicted to be important seed dispersers, however little is known about their seed dispersal effectiveness. To understand wild Bornean orangutan (Pongo pygmaeus wurmbii) seed dispersal effectiveness, we measured the quantity of seeds dispersed, and we considered the quality of dispersal by measuring germination rates of gut-passed and control seeds, gut transit times, and dispersal distances. Research was conducted in Gunung Palung National Park, Borneo, Indonesia (August 2018 to August 2019). We systematically collected orangutan fecal samples, feeding behavior, and GPS tracks during consecutive full-day focal follows. We sieved 549 fecal samples collected from 36 orangutans to count and identify seeds (>2mm). Out of the fecal samples collected, 413 (75.2%) contained seeds. A total of 24 genera were dispersed via endozoochory. Orangutan fecal samples contained a mean of 1.17 genera (range 0-7). Germination experiments were conducted with orangutan defecated seeds and seeds from fruit. A significantly higher percent of orangutan defecated seeds germinated for 5 out of 6 genera than control seeds with pulp (p<0.01). A significantly higher percent of orangutan defecated seeds germinated for 3 out of 6 genera compared to control seeds without pulp (p<0.01). Gut transit times in wild orangutans ranged from 39.5 to 87 hours (n=6). Finally, we modeled seed dispersal distances using orangutan movement tracks (n= 30) with gut passage durations of 45 and 60 hours. Gut retention times of 45 hours resulted in a mean dispersal distance of 507 ± 123m (range 69 - 1341), and 60 hours resulted in a mean distance of 592 ± 115m (range 83 - 1260). We conclude orangutans are effective seed dispersers with similar efficacy to other great apes. Orangutans disperse a wide variety of genera over medium to long distances and gut passed seeds germinate at higher rates compared with controls. Keywords: Ecology, Seed dispersal effectiveness, Movement, Tropical, Asia Funders: National Science Foundation (BCS-1638823); National Geographic Society; US Fish and Wildlife Services (F19AP00798; F18AP00898); Disney Wildlife Conservation Fund 
                        more » 
                        « less   
                    
                            
                            Long Distance Seed Dispersal by Forest Elephants
                        
                    
    
            By dispersing seeds long distances, large, fruit-eating animals influence plant population spread and community dynamics. After fruit consumption, animal gut passage time and movement determine seed dispersal patterns and distances. These, in turn, are influenced by extrinsic, environmental variables and intrinsic, individual-level variables. We simulated seed dispersal by forest elephants ( Loxodonta cyclotis ) by integrating gut passage data from wild elephants with movement data from 96 individuals. On average, elephants dispersed seeds 5.3 km, with 89% of seeds dispersed farther than 1 km. The longest simulated seed dispersal distance was 101 km, with an average maximum dispersal distance of 40.1 km. Seed dispersal distances varied among national parks, perhaps due to unmeasured environmental differences such as habitat heterogeneity and configuration, but not with human disturbance or habitat openness. On average, male elephants dispersed seeds farther than females. Elephant behavioral traits strongly influenced dispersal distances, with bold, exploratory elephants dispersing seeds 1.1 km farther than shy, idler elephants. Protection of forest elephants, particularly males and highly mobile, exploratory individuals, is critical to maintaining long distance seed dispersal services that shape plant communities and tropical forest habitat. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1845649
- PAR ID:
- 10338503
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 9
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Orangutans are large-bodied frugivores predicted to be effective seed dispersers. We studied Bornean orangutan (Pongo pygmaeus wurmbii) seed dispersal effectiveness, by measuring the quantity of seeds dispersed and the quality of dispersal in Gunung Palung National Park, Borneo, Indonesia (August 2018 to August 2019). For dispersal quality we conducted germination experiments, measured germination rates, and modeled dispersal distances. We systematically collected orangutan fecal samples, feeding behavior, and GPS tracks during focal follows. We sieved 549 fecal samples collected from 36 orangutans and identified the seeds, and of the fecal samples collected 75.2% contained seeds. A total of 24 genera were dispersed via endozoochory. Germination experiments were conducted with orangutan defecated seeds and seeds from fruits. A significantly higher percent of orangutan defecated seeds germinated for 5 out of 6 genera than control seeds with pulp (p<0.01). A significantly higher percent of orangutan defecated seeds germinated for 3 out of 6 genera compared to control seeds without pulp (p<0.01). Gut transit times in wild orangutans ranged from 39.5 to 87 hours. Finally, we modeled seed dispersal distances using orangutan movement tracks (n= 30) with gut passage durations of 45 and 60 hours. Gut retention times of 45 hours resulted in a mean dispersal distance of 507 ± 123m, and 60 hours resulted in a mean distances of 592 ± 115m. We conclude orangutans are effective seed dispersers, as orangutans disperse a wide variety of genera over medium to long distances and defecated seeds exhibit high germinability. Orangutans are large-bodied frugivores predicted to be effective seed dispersers. We studied Bornean orangutan (Pongo pygmaeus wurmbii) seed dispersal effectiveness, by measuring the quantity of seeds dispersed and the quality of dispersal in Gunung Palung National Park, Borneo, Indonesia (August 2018 to August 2019). For dispersal quality we conducted germination experiments, measured germination rates, and modeled dispersal distances. We systematically collected orangutan fecal samples, feeding behavior, and GPS tracks during focal follows. We sieved 549 fecal samples collected from 36 orangutans and identified the seeds, and of the fecal samples collected 75.2% contained seeds. A total of 24 genera were dispersed via endozoochory. Germination experiments were conducted with orangutan defecated seeds and seeds from fruits. A significantly higher percent of orangutan defecated seeds germinated for 5 out of 6 genera than control seeds with pulp (p<0.01). A significantly higher percent of orangutan defecated seeds germinated for 3 out of 6 genera compared to control seeds without pulp (p<0.01). Gut transit times in wild orangutans ranged from 39.5 to 87 hours. Finally, we modeled seed dispersal distances using orangutan movement tracks (n= 30) with gut passage durations of 45 and 60 hours. Gut retention times of 45 hours resulted in a mean dispersal distance of 507 ± 123m, and 60 hours resulted in a mean distances of 592 ± 115m. We conclude orangutans are effective seed dispersers, as orangutans disperse a wide variety of genera over medium to long distances and defecated seeds exhibit high germinability. Funders: National Science Foundation (BCS-1638823); National Geographic Society; US Fish and Wildlife Services (F19AP00798; F18AP00898); Disney Wildlife Conservation Fundmore » « less
- 
            Orangutans consume large quantities of ripe fruit and disperse intact seeds over wide areas. However, few studies have quantified seed dispersal in orangutans (Galdikas 1982; Nielsen et al. 2012). We hypothesized that orangutans are effective seed dispersers. This was tested by identifying, measuring and counting seeds in orangutan feces and recording fecal coordinates to determine seed spatial distribution patterns. Orangutan feces were collected opportunistically from March- September 2015 at the Tuanan Research Station (n=97) and from July- August 2016 at the Cabang Panti Research Station in Gunung Palung National Park, Indonesia (n=98). The feces were sieved, seeds were counted, and seed morphotypes were identified in at least 96% of fecal samples. Flanged males, unflanged males, adult females, and juveniles independent enough from their mother to allow for fecal collection, were all observed dispersing seeds. Four fruit genera were dispersed at Cabang Panti and nine fruit genera were dispersed at Tuanan. At Cabang Panti, the largest intact seed size recorded was 2.29cm in length and the smallest seeds dispersed were less than 1mm Ficus seeds. At Tuanan, 31% of fecal samples had 2 or more genera, 42% had 1 genera, and 26% had no seeds. We used descriptive GIS to describe the spatial distribution of the dispersed seeds. We concluded that orangutans have an important role in fruit tree recruitment. They disperse intact seeds of varying sizes and disperse several different genera of seeds. Future research will measure seed dispersal distances and orangutan gut-passage rates to establish the orangutan seed shadow. Funders include the National Geographic Society, the Leakey Foundation, the US Fish and Wildlife Service, United States Agency for International Development, and the National Science Foundation (BCS-0936199).more » « less
- 
            Abstract Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have important consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed‐dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen‐based defensive compounds common in fruits of the neotropical plant genusPiper(Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts toPiperfruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of ants redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants.more » « less
- 
            Abstract Habitat fragmentation impacts ecosystems worldwide through habitat loss, reduced connectivity, and edge effects. Yet, these landscape factors are often confounded, leaving much to be investigated about their relative effects, especially on species interactions. In a landscape experiment, we investigated the consequences of connectivity and edge effects for seed dispersal by ants. We found that ants dispersed seeds farther in habitat patches connected by corridors, but only in patch centers. We did not see an effect on the total number of seeds moved or the rate ants detected seeds. Furthermore, we did not see any differences in ant community composition across patch types, suggesting that shifts in ant behavior or other factors increased ant seed dispersal in patches connected by corridors. Long‐distance seed dispersal by ants that requires an accumulation of short‐distance dispersal events over generations may be an underappreciated mechanism through which corridors increase plant diversity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    