skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sharp bounds for decomposing graphs into edges and triangles
Abstract For a real constant α , let $$\pi _3^\alpha (G)$$ be the minimum of twice the number of K 2 ’s plus α times the number of K 3 ’s over all edge decompositions of G into copies of K 2 and K 3 , where K r denotes the complete graph on r vertices. Let $$\pi _3^\alpha (n)$$ be the maximum of $$\pi _3^\alpha (G)$$ over all graphs G with n vertices. The extremal function $$\pi _3^3(n)$$ was first studied by Győri and Tuza ( Studia Sci. Math. Hungar. 22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova ( Combin. Probab. Comput. 28 (2019) 465–472) proved via flag algebras that $$\pi _3^3(n) \le (1/2 + o(1)){n^2}$$ . We extend their result by determining the exact value of $$\pi _3^\alpha (n)$$ and the set of extremal graphs for all α and sufficiently large n . In particular, we show for α = 3 that K n and the complete bipartite graph $${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$$ are the only possible extremal examples for large n .  more » « less
Award ID(s):
1855653 1855622
PAR ID:
10274261
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Combinatorics, Probability and Computing
Volume:
30
Issue:
2
ISSN:
0963-5483
Page Range / eLocation ID:
271 to 287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. Gotshall, O'Brien and Tait conjectured that for sufficiently large $$n$$, the $$n$$-vertex outerplanar graph with maximum spread is the graph obtained by joining a vertex to a path on $n-1$ vertices. In this paper, we disprove this conjecture by showing that the extremal graph is the graph obtained by joining a vertex to a path on $$\lceil(2n-1)/3\rceil$$ vertices and $$\lfloor(n-2)/3\rfloor$$ isolated vertices. For planar graphs, we show that the extremal $$n$$-vertex planar graph attaining the maximum spread is the graph obtained by joining two nonadjacent vertices to a path on $$\lceil(2n-2)/3\rceil$$ vertices and $$\lfloor(n-4)/3\rfloor$$ isolated vertices. 
    more » « less
  2. Extremal combinatorics often deals with problems of maximizing a specific quantity related to substructures in large discrete structures. The first question of this kind that comes to one's mind is perhaps determining the maximum possible number of induced subgraphs isomorphic to a fixed graph $$H$$ in an $$n$$-vertex graph. The asymptotic behavior of this number is captured by the limit of the ratio of the maximum number of induced subgraphs isomorphic to $$H$$ and the number of all subgraphs with the same number vertices as $$H$$; this quantity is known as the _inducibility_ of $$H$$. More generally, one can define the inducibility of a family of graphs in the analogous way.Among all graphs with $$k$$ vertices, the only two graphs with inducibility equal to one are the empty graph and the complete graph. However, how large can the inducibility of other graphs with $$k$$ vertices be? Fix $$k$$, consider a graph with $$n$$ vertices join each pair of vertices independently by an edge with probability $$\binom{k}{2}^{-1}$$. The expected number of $$k$$-vertex induced subgraphs with exactly one edge is $$e^{-1}+o(1)$$. So, the inducibility of large graphs with a single edge is at least $$e^{-1}+o(1)$$. This article establishes that this bound is the best possible in the following stronger form, which proves a conjecture of Alon, Hefetz, Krivelevich and Tyomkyn: the inducibility of the family of $$k$$-vertex graphs with exactly $$l$$ edges where $$0<\binom{k}{2}$$ is at most $$e^{-1}+o(1)$$. The example above shows that this is tight for $l=1$ and it can be also shown to be tight for $l=k-1$. The conjecture was known to be true in the regime where $$l$$ is superlinearly bounded away from $$0$$ and $$\binom{k}{2}$$, for which the sum of the inducibilities goes to zero, and also in the regime where $$l$$ is bounded away from $$0$$ and $$\binom{k}{2}$$ by a sufficiently large linear function. The article resolves the hardest cases where $$l$$ is linearly close to $$0$$ or close to $$\binom{k}{2}$$, and provides generalizations to hypergraphs. 
    more » « less
  3. null (Ed.)
    Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds. 
    more » « less
  4. The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. In this paper, we consider the family of graphs which contain no $$K_{s,t}$$-minor. We show that for any $$t\geq s \geq  2$$ and sufficiently large $$n$$, there is an integer $$\xi_{t}$$ such that the extremal $$n$$-vertex $$K_{s,t}$$-minor-free graph attaining the maximum spread is the graph obtained by joining a graph $$L$$ on $(s-1)$ vertices to the disjoint union of $$\lfloor \frac{2n+\xi_{t}}{3t}\rfloor$$ copies of $$K_t$$ and $$n-s+1 - t\lfloor \frac{2n+\xi_t}{3t}\rfloor$$ isolated vertices. Furthermore, we give an explicit formula for $$\xi_{t}$$ and an explicit description for the graph $$L$$ for $$t \geq \frac32(s-3) +\frac{4}{s-1}$$. 
    more » « less
  5. null (Ed.)
    Abstract The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0 such that if G is a K r+ 1 -free graph on n vertices with e ( G ) > ex( n , K r +1 )– α n 2 , then one can remove εn 2 edges from G to obtain an r -partite graph. Füredi gave a short proof that one can choose α = ε . We give a bound for the relationship of α and ε which is asymptotically sharp as ε → 0. 
    more » « less