Abstract Land surface models (LSMs) play a crucial role in elucidating water and carbon cycles by simulating processes such as plant transpiration and evaporation from bare soil, yet calibration often relies on comparing LSM outputs of landscape total evapotranspiration (ET) and discharge with measured bulk fluxes. Discrepancies in partitioning into component fluxes predicted by various LSMs have been noted, prompting the need for improved evaluation methods. Stable water isotopes serve as effective tracers of component hydrologic fluxes, but data and model integration challenges have hindered their widespread application. Leveraging National Ecological Observation Network measurements of water isotope ratios at 16 US sites over 3 years combined with LSM‐modeled fluxes, we employed an isotope‐enabled mass balance framework to simulateETisotope values (δET) within three operational LSMs (Mosaic, Noah, and VIC) to evaluate their partitioning. Models simulatingδETvalues consistent with observations were deemed more reflective of water cycling in these ecosystems. Mosaic exhibited the best overall performance (Kling‐Gupta Efficiency of 0.28). For both Mosaic and Noah there were robust correlations between bare soil evaporation fraction and error (negative) as well as transpiration fraction and error (positive). We found the point at which errors are smallest (x‐intercept of the multi‐site regression) is at a higher transpiration fraction than is currently specified in the models. Which means that transpiration fraction is underestimated on average. Stable isotope tracers offer an additional tool for model evaluation and identifying areas for improvement, potentially enhancing LSM simulations and our understanding of land‐surface hydrologic processes.
more »
« less
Multi-variable, multi-configuration testing of ORCHIDEE land surface model water flux and storage estimates across semi-arid sites in the southwestern US
Abstract. Plant activity in semi-arid ecosystems is largely controlled by pulses of precipitation, making them particularly vulnerable to increased aridity expected with climate change. Simple bucket-model hydrology schemes in land surface models (LSMs) have had limited ability in accurately capturing semi-arid water stores and fluxes. Recent, more complex, LSM hydrology models have not been widely evaluated against semi-arid ecosystem in situ data. We hypothesize that the failure of older LSM versions to represent evapotranspiration, ET, in arid lands is because simple bucket models do not capture realistic fluctuations in upper layer soil moisture. We therefore predict that including a discretized soil hydrology scheme based on a mechanistic description of moisture diffusion will result in an improvement in model ET when compared to data because the temporal variability of upper layer soil moisture content better corresponds to that of precipitation inputs. To test this prediction, we compared ORCHIDEE LSM simulations from (1) a simple conceptual 2-layer bucket scheme with fixed hydrological parameters; and (2) a 11-layer discretized mechanistic scheme of moisture diffusion in unsaturated soil based on Richards equations against daily and monthly soil moisture and ET observations, together with data-derived transpiration / evaporation, T / ET, ratios, from six semi-arid grass, shrub and forest sites in the southwestern USA. The 11-layer scheme also has modified calculations of surface runoff, bare soil evaporation, and water limitation to be compatible with the more complex hydrology configuration. To diagnose remaining discrepancies in the 11-layer model, we tested two further configurations: (i) the addition of a term that captures bare soil evaporation resistance to dry soil; and (ii) reduced bare soil fraction. We found that the more mechanistic 11-layer model results better representation of the daily and monthly ET observations. We show that is likely because of improved simulation of soil moisture in the upper layers of soil (top 5 cm). Some discrepancies between observed and modelled soil moisture and ET may allow us to prioritize future model development. Adding a soil resistance term generally decreased simulated E and increased soil moisture content, thus increasing T and T / ET ratios and reducing the negative T / ET model-data bias. By reducing the bare soil fraction in the model, we illustrated that modelled leaf T is too low at sparsely vegetated sites. We conclude that a discretized soil hydrology scheme and associated developments improves estimates of ET by allowing the model to more closely match the pulse precipitation dynamics of these semi-arid ecosystems; however, the partitioning of T from bare soil evaporation is not solved by this modification alone.
more »
« less
- Award ID(s):
- 1655499
- PAR ID:
- 10274501
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences Discussions
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Popular evapotranspiration (ET) partitioning methods make assumptions that might not be well‐suited to dryland ecosystems, such as high sensitivity of plant water‐use efficiency (WUE) to vapor pressure deficit (VPD). Our objectives were to (a) create an ET partitioning model that can produce fine‐scale estimates of transpiration (T) in drylands, and (b) use this approach to evaluate how climate controls T and WUE across ecosystem types and timescales along a dryland aridity gradient. We developed a novel, semi‐mechanistic ET partitioning method using a Bayesian approach that constrains abiotic evaporation using process‐based models, and loosely constrains time‐varying WUE within an autoregressive framework. We used this method to estimate daily T and weekly WUE across seven dryland ecosystem types and found that T dominates ET across the aridity gradient. Then, we applied cross‐wavelet coherence analysis to evaluate the temporal coherence between focal response variables (WUE and T/ET) and environmental variables. At yearly scales, we found that WUE at less arid, higher elevation sites was primarily limited by atmospheric moisture demand, and WUE at more arid, lower elevation sites was primarily limited by moisture supply. At sub‐yearly timescales, WUE and VPD were sporadically correlated. Hence, ecosystem‐scale dryland WUE is not always sensitive to changes in VPD at short timescales, despite this being a common assumption in many ET partitioning models. This new ET partitioning method can be used in dryland ecosystems to better understand how climate influences physically and biologically driven water fluxes.more » « less
-
Semi-arid regions faced with increasingly scarce freshwater resources must manage competing demands in the food-energy-water nexus. A possible solution modifies soil hydrologic properties using biosurfactants to reduce evaporation and improve water retention. In this study, two different soil textures representative of agricultural soils in Kansas were treated with a direct application of the biosurfactant, Surfactin, and an indirect application via inoculation of Bacillus subtilis . Evaporation rates of the wetted soils were measured when exposed to artificial sunlight (1000 W/m 2 ) and compared to non-treated control soils. Experimental results indicate that both treatments alter soil moisture dynamics by increasing evaporation rates by when soil moisture is plentiful (i.e., constant rate period) and decreasing evaporation rates by when moisture is scarce (i.e., slower rate period). Furthermore, both treatments significantly reduced the soil moisture content at which the soil transitioned from constant rate to slower rate evaporation. Out of the two treatments, inoculation with B. subtilis generally produced greater changes in evaporation dynamics; for example, the treatment with B. subtilis in sandy loam soils increased constant rate periods of evaporation by 43% and decreased slower rate evaporation by 49%. In comparing the two soil textures, the sandy loam soil exhibited a larger treatment effect than the loam soil. To evaluate the potential significance of the treatment effects, a System Dynamics Model operationalized the evaporation rate results and simulated soil moisture dynamics under typical daily precipitation conditions. The results from this model indicate both treatment methods significantly altered soil moisture dynamics in the sandy loam soils and increased the probability of the soil exhibiting constant rate evaporation relative to the control soils. Overall, these findings suggest that the decrease in soil moisture threshold observed in the experimental setting could increase soil moisture availability by prolonging the constant rate stage of evaporation. As inoculation with B. subtilis in the sandy loam soil had the most pronounced effects in both the experimental and simulated contexts, future work should focus on testing this treatment in field trials with similar soil textures.more » « less
-
Abstract Numerous studies have examined the reliability of various precipitation products over the Mekong River Basin (MRB) and modeled its basin hydrology. However, there is a lack of comprehensive studies on precipitation‐induced uncertainties in hydrological simulations using process‐based land surface models. This study examines the propagation of precipitation uncertainty into hydrological simulations over the entire MRB using the Community Land Model version 5 (CLM5) at a high spatial resolution of 0.05° (∼5 km) and without any parameter calibration. Simulations conducted using different precipitation datasets are compared to investigate the discrepancies in streamflow, terrestrial water storage (TWS), soil moisture, and evapotranspiration (ET) caused by precipitation uncertainty. Results indicate that precipitation is a key determinant of simulated streamflow in the MRB; peak flow and soil moisture are particularly sensitive to precipitation input. Further, precipitation data with a higher spatial resolution did not improve the simulations, contrary to the common perception that using meteorological forcing with higher spatial resolution would improve hydrological simulations. In addition, since high flow indicators are particularly influenced by precipitation data, the choice of precipitation data could directly impact flood pulse simulations in the MRB. Notable differences are also found among TWS, soil moisture, and ET simulated using different precipitation products. Moreover, TWS, soil moisture, and ET exhibit a varying degree of sensitivity to precipitation uncertainty. This study provides crucial insights on precipitation‐induced uncertainties in process‐based hydrological modeling and uncovers these uncertainties in the MRB.more » « less
-
Abstract Vadose zone soil moisture is often considered a pivotal intermediary water reservoir between surface and groundwater in semi-arid regions. Understanding its dynamics in response to changes in meteorologic forcing patterns is essential to enhance the climate resiliency of our ecological and agricultural system. However, the inability to observe high-resolution vadose zone soil moisture dynamics over large spatiotemporal scales hinders quantitative characterization. Here, utilizing pre-existing fiber-optic cables as seismic sensors, we demonstrate a fiber-optic seismic sensing principle to robustly capture vadose zone soil moisture dynamics. Our observations in Ridgecrest, California reveal sub-seasonal precipitation replenishments and a prolonged drought in the vadose zone, consistent with a zero-dimensional hydrological model. Our results suggest a significant water loss of 0.25 m/year through evapotranspiration at our field side, validated by nearby eddy-covariance based measurements. Yet, detailed discrepancies between our observations and modeling highlight the necessity for complementary in-situ validations. Given the escalated regional drought risk under climate change, our findings underscore the promise of fiber-optic seismic sensing to facilitate water resource management in semi-arid regions.more » « less
An official website of the United States government

