skip to main content


Title: On the Precipitation‐Induced Uncertainties in Process‐Based Hydrological Modeling in the Mekong River Basin
Abstract

Numerous studies have examined the reliability of various precipitation products over the Mekong River Basin (MRB) and modeled its basin hydrology. However, there is a lack of comprehensive studies on precipitation‐induced uncertainties in hydrological simulations using process‐based land surface models. This study examines the propagation of precipitation uncertainty into hydrological simulations over the entire MRB using the Community Land Model version 5 (CLM5) at a high spatial resolution of 0.05° (∼5 km) and without any parameter calibration. Simulations conducted using different precipitation datasets are compared to investigate the discrepancies in streamflow, terrestrial water storage (TWS), soil moisture, and evapotranspiration (ET) caused by precipitation uncertainty. Results indicate that precipitation is a key determinant of simulated streamflow in the MRB; peak flow and soil moisture are particularly sensitive to precipitation input. Further, precipitation data with a higher spatial resolution did not improve the simulations, contrary to the common perception that using meteorological forcing with higher spatial resolution would improve hydrological simulations. In addition, since high flow indicators are particularly influenced by precipitation data, the choice of precipitation data could directly impact flood pulse simulations in the MRB. Notable differences are also found among TWS, soil moisture, and ET simulated using different precipitation products. Moreover, TWS, soil moisture, and ET exhibit a varying degree of sensitivity to precipitation uncertainty. This study provides crucial insights on precipitation‐induced uncertainties in process‐based hydrological modeling and uncovers these uncertainties in the MRB.

 
more » « less
Award ID(s):
1752729
NSF-PAR ID:
10375645
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
2
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water resources reanalysis (WRR) can be used as a numerical tool to advance our understanding of hydrological processes where in situ observations are limited. However, WRR products are associated with uncertainty that needs to be quantified to improve usability of such products in water resources applications. In this study, we evaluate estimates of water cycle components from 18 state-of-the-art WRR datasets derived from different land surface/hydrological models, meteorological forcing, and precipitation datasets. The evaluation was conducted at three spatial scales in the upper Blue Nile basin in Ethiopia. Precipitation, streamflow, evapotranspiration (ET), and terrestrial water storage (TWS) were evaluated against in situ daily precipitation and streamflow measurements, remote sensing–derived ET, and the NASA Gravity Recovery and Climate Experiment (GRACE) product, respectively. Our results highlight the current strengths and limitations of the available WRR datasets in analyzing the hydrological cycle and dynamics of the study basins, showing an overall underestimation of ET and TWS and overestimation of streamflow. While calibration improves streamflow simulation, it results in a relatively poorer performance in terms of ET. In addition, we show that the differences in the schemes used in the various land surface models resulted in significant differences in the estimation of the water cycle components from the respective WRR products, while we noted small differences among the products related to precipitation forcing. We did not identify a single product that consistently outperformed others; however, we found that there are specific WRR products that provided accurate representation of a single component of the water cycle (e.g., only runoff) in the area.

     
    more » « less
  2. Abstract

    Precipitation is the primary driver of hydrological models, and its spatial and temporal variability have a great impact on water partitioning. However, in data‐sparse regions, uncertainty in precipitation estimates is high and the sensitivity of water partitioning to this uncertainty is unknown. This is a particular challenge in drylands (semi‐arid and arid regions) where the water balance is highly sensitive to rainfall, yet there is commonly a lack of in situ rain gauge data. To understand the impact of precipitation uncertainty on the water balance in drylands, here we have performed simulations with a process‐based hydrological model developed to characterize the water balance in arid and semi‐arid regions (DRYP: DRYland water Partitioning model). We performed a series of numerical analyses in the Upper Ewaso Ng'iro basin, Kenya driven by three gridded precipitation datasets with different spatio‐temporal resolutions (IMERG, MSWEP, and ERA5), evaluating simulations against streamflow observations and remotely sensed data products of soil moisture, actual evapotranspiration, and total water storage. We found that despite the great differences in the spatial distribution of rainfall across a climatic gradient within the basin, DRYP shows good performance for representing streamflow (KGE >0.6), soil moisture, actual evapotranspiration, and total water storage (r >0.5). However, the choice of precipitation datasets greatly influences surface (infiltration, runoff, and transmission losses) and subsurface fluxes (groundwater recharge and discharge) across different climatic zones of the Ewaso Ng'iro basin. Within humid areas, evapotranspiration does not show sensitivity to the choice of precipitation dataset, however, in dry lowland areas it becomes more sensitive to precipitation rates as water‐limited conditions develop. The analysis shows that the highest rates of precipitation produce high rates of diffuse recharge in Ewaso uplands and also propagate into runoff, transmission losses and, ultimately focused recharge, with the latter acting as the main mechanism of groundwater recharge in low dry areas. The results from this modelling exercise suggest that care must be taken in selecting forcing precipitation data to drive hydrological modelling efforts, especially in basins that span a climatic gradient. These results also suggest that more effort is required to reduce uncertainty between different precipitation datasets, which will in turn result in more consistent quantification of the water balance.

     
    more » « less
  3. null (Ed.)
    Abstract. Plant activity in semi-arid ecosystems is largely controlled by pulses of precipitation, making them particularly vulnerable to increased aridity expected with climate change. Simple bucket-model hydrology schemes in land surface models (LSMs) have had limited ability in accurately capturing semi-arid water stores and fluxes. Recent, more complex, LSM hydrology models have not been widely evaluated against semi-arid ecosystem in situ data. We hypothesize that the failure of older LSM versions to represent evapotranspiration, ET, in arid lands is because simple bucket models do not capture realistic fluctuations in upper layer soil moisture. We therefore predict that including a discretized soil hydrology scheme based on a mechanistic description of moisture diffusion will result in an improvement in model ET when compared to data because the temporal variability of upper layer soil moisture content better corresponds to that of precipitation inputs. To test this prediction, we compared ORCHIDEE LSM simulations from (1) a simple conceptual 2-layer bucket scheme with fixed hydrological parameters; and (2) a 11-layer discretized mechanistic scheme of moisture diffusion in unsaturated soil based on Richards equations against daily and monthly soil moisture and ET observations, together with data-derived transpiration / evaporation, T / ET, ratios, from six semi-arid grass, shrub and forest sites in the southwestern USA. The 11-layer scheme also has modified calculations of surface runoff, bare soil evaporation, and water limitation to be compatible with the more complex hydrology configuration. To diagnose remaining discrepancies in the 11-layer model, we tested two further configurations: (i) the addition of a term that captures bare soil evaporation resistance to dry soil; and (ii) reduced bare soil fraction. We found that the more mechanistic 11-layer model results better representation of the daily and monthly ET observations. We show that is likely because of improved simulation of soil moisture in the upper layers of soil (top 5 cm). Some discrepancies between observed and modelled soil moisture and ET may allow us to prioritize future model development. Adding a soil resistance term generally decreased simulated E and increased soil moisture content, thus increasing T and T / ET ratios and reducing the negative T / ET model-data bias. By reducing the bare soil fraction in the model, we illustrated that modelled leaf T is too low at sparsely vegetated sites. We conclude that a discretized soil hydrology scheme and associated developments improves estimates of ET by allowing the model to more closely match the pulse precipitation dynamics of these semi-arid ecosystems; however, the partitioning of T from bare soil evaporation is not solved by this modification alone. 
    more » « less
  4. Abstract

    Accurate soil moisture and streamflow data are an aspirational need of many hydrologically relevant fields. Model simulated soil moisture and streamflow hold promise but models require validation prior to application. Calibration methods are commonly used to improve model fidelity but misrepresentation of the true dynamics remains a challenge. In this study, we leverage soil parameter estimates from the Soil Survey Geographic (SSURGO) database and the probability mapping of SSURGO (POLARIS) to improve the representation of hydrologic processes in the Weather Research and Forecasting Hydrological modeling system (WRF‐Hydro) over a central California domain. Our results show WRF‐Hydro soil moisture exhibits increased correlation coefficients (r), reduced biases, and increased Kling‐Gupta Efficiencies (KGEs) across seven in situ soil moisture observing stations after updating the model's soil parameters according to POLARIS. Compared to four well‐established soil moisture data sets including Soil Moisture Active Passive data and three Phase 2 North American Land Data Assimilation System land surface models, our POLARIS‐adjusted WRF‐Hydro simulations produce the highest mean KGE (0.69) across the seven stations. More importantly, WRF‐Hydro streamflow fidelity also increases, especially in the case where the model domain is set up with SSURGO‐informed total soil thickness. The magnitude and timing of peak flow events are better captured,rincreases across nine United States Geological Survey stream gages, and the mean KGE across seven of the nine gages increases from 0.12 to 0.66. Our pre‐calibration parameter estimate approach, which is transferable to other spatially distributed hydrological models, can substantially improve a model's performance, helping reduce calibration efforts and computational costs.

     
    more » « less
  5. Abstract

    Numerous studies have examined the changes in streamflow in the Mekong River Basin (MRB) using observations and hydrological modeling; however, there is a lack of integrated modeling studies that explicitly simulate the natural and human‐induced changes in flood dynamics over the entire basin. Here we simulate the river‐floodplain‐reservoir inundation dynamics over the MRB for 1979–2016 period using a newly integrated, high‐resolution (~5 km) river hydrodynamics‐reservoir operation model. The framework is based on the river‐floodplain hydrodynamic model CaMa‐Flood in which a new reservoir operation scheme is incorporated by including 86 existing MRB dams. The simulated flood extent is downscaled to a higher resolution (~90 m) to investigate fine‐scale inundation dynamics, and results are validated with ground‐ and satellite‐based observations. It is found that the historical variations in surface water storage have been governed primarily by climate variability; the impacts of dams on river‐floodplain hydrodynamics were marginal until 2009. However, results indicate that the dam impacts increased noticeably in 2010 when the basin‐wide storage capacity doubled due to the construction of new mega dams. Further, results suggest that the future flood dynamics in the MRB would be considerably different than in the past even without climate change and additional dams. However, it is also found that the impacts of dams can largely vary depending on reservoir operation strategies. This study is expected to provide the basis for high‐resolution river‐floodplain‐reservoir modeling for a holistic assessment of the impacts of dams and climate change on the floodpulse‐dependent hydro‐ecological systems in the MRB and other global regions.

     
    more » « less