skip to main content


Title: Influence of droplet velocity, spacing, and inter-arrival time on line formation and saturation in binder jet additive manufacturing
Binder Jetting (BJ) is a low-cost Additive Manufacturing (AM) process that uses inkjet technology to selectively bind particles in a powder bed. BJ relies on the ability to control, not only the placement of binder on the surface but also its imbibition into the powder bed. This is a complex process in which picoliter-sized droplets impact powder beds at velocities of 1–10 m/s. However, the effects of printing parameters such as droplet velocity, size, spacing, and inter-arrival time on saturation level (fraction of pore space filled with binder) and line formation (merging of droplets to form a line) are unknown. Prior attempts to predict saturation levels with simple measurements of droplet primitives and capillary pressure assume that droplet/powder interactions are dominated by static equilibrium and neglect the impact of printing parameters. This study analyzes the influence of these parameters on the effective saturation level and conditions for line formation when printing single lines into powder beds of varied materials (316 stainless steel, 420 stainless steel, and alumina) and varied particle size (d50=10–47 µm). Results show that increasing droplet velocity or droplet spacing decreases effective saturation while droplet spacing, velocity, and inter-arrival time affect line formation. At constant printing velocity, the conditions for successful line printing are shown to be a function of droplet spacing and square root of the droplet inter-arrival time analogous to the Washburn model for infiltration into a porous media. The results have implications to maximizing build rates and improving quality of small features in BJ.  more » « less
Award ID(s):
1946724
NSF-PAR ID:
10274585
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Additive manufacturing
Volume:
37
ISSN:
2214-8604
Page Range / eLocation ID:
101711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Binder Jetting (BJ) has increased in popularity and capability since its development at MIT as it offers advantages such as fast build rates, integrated overhang support, low-power requirements, and versatility in materials. However, defects arise during layer spreading and printing that are difficult to remove during post-processing. Many of these defects are caused by particle rearrangement/ejection during binder deposition. This study explores methods of reducing particle rearrangement and ejection by applying small amounts of moisture to increase the cohesive forces between powder particles. A moisture application system was built using a piezo-electric disk to atomize water to apply a desired liquid to the BJ powder bed without disruption. The moisture is applied after spreading a new layer. Lines of binder were printed using varying droplet spacings and moisture levels. Results show that the moisture delivery system applied moisture levels across the entire application area with a standard deviation under 23%. The moisture levels delivered also had a single position test-to-test uniformity standard deviation under 21%. All tested levels of moisture addition showed mitigation of the balling defects observed in lines printed using dry powder under the same parameters. Moisture addition decreased effective saturation and increased line dimensions (height and width), but lines printed using the smallest amount of moisture tested, showed similar saturation levels and line widths to lines printed in dry powder while still partially mitigating balling.

     
    more » « less
  2. The Binder Jetting (BJ) process is capable of producing parts at high speeds from a variety of materials, but performance is limited by defects in the final parts. An improved understanding of fundamental phenomena in the printing process is needed to understand the source of these defects. This work presents initial findings from high-speed imaging of the BJ process using synchrotron X-rays. High-speed X-ray imaging allows for direct observation of key physical mechanisms in the printing process that may introduce defects including binder droplet impact on the powder bed, powder rearrangement below and above the powder bed surface, and balling formation. Testing was performed with multiple materials and droplet spacings to compare the effect on observed phenomena. Multiple lines were printed on packed and loose powder beds to further explore factors that affect defect formation and to better simulate industrially relevant conditions. 
    more » « less
  3. Abstract Binder jetting is an additive manufacturing process utilizing a liquid-based binding agent to selectively join the material in a powder bed. It is capable of manufacturing complex-shaped parts from a variety of materials including metals, ceramics, and polymers. This paper provides a comprehensive review on currently available reports on metal binder jetting from both academia and industry. Critical factors and their effects in metal binder jetting are reviewed and divided into two categories, namely material-related factors and process-related parameters. The reported data on density, dimensional and geometric accuracy, and mechanical properties achieved by metal binder jetting are summarized. With parameter optimization and a suitable sintering process, ten materials have been proven to achieve a relative density of higher than 90%. Indepth discussion is provided regarding densification as a function of various attributes of powder packing, printing, and post-processing. A few grades of stainless steel obtained equivalent or superior mechanical properties compared to cold working. Although binder jetting has gained its popularity in the past several years, it has not been sufficiently studied compared with other metal additive manufacturing (AM) processes such as powder bed fusion and directed energy deposition. Some aspects that need further research include the understanding of powder spreading process, binder-powder interaction, and part shrinkage. 
    more » « less
  4. Although commercial binder jetting (BJ) printers are available, they typically do not allow sufficient control over process parameters needed to study fundamental process characteristics. This work presents an overview of the design and construction of a custom BJ system used to observe fundamental phenomena in the BJ process. CAD models for the design and information on the software of this system is also given. This system will help elucidate the mechanisms that introduce part defects and other challenges unique to the BJ process. The BJ system was designed for both laboratory-scale experiments with a 100 x 100 mm build box and high-speed synchrotron X-ray imaging with a 500 μm thick powder bed, requiring high-accuracy motion stages and a controller with precise timing. The printer includes functionality for depositing and rolling powder, printing multi-layer parts, and direct observation of the jetting nozzle. This BJ system has enabled experiments that provide insight into the printing process that will aid future efforts to mitigate challenges associated with BJ. 
    more » « less
  5. null (Ed.)
    Despite its potential to overcome the design and processing barriers of traditional subtractive and formative manufacturing techniques, the use of laser powder bed fusion (LPBF) metal additive manufacturing is currently limited due to its tendency to create flaws. A multitude of LPBF-related flaws, such as part-level deformation, cracking, and porosity are linked to the spatiotemporal temperature distribution in the part during the process. The temperature distribution, also called the thermal history, is a function of several factors encompassing material properties, part geometry and orientation, processing parameters, placement of supports, among others. These broad range of factors are difficult and expensive to optimize through empirical testing alone. Consequently, fast and accurate models to predict the thermal history are valuable for mitigating flaw formation in LPBF-processed parts. In our prior works, we developed a graph theory-based approach for predicting the temperature distribution in LPBF parts. This mesh-free approach was compared with both non-proprietary and commercial finite element packages, and the thermal history predictions were experimentally validated with in- situ infrared thermal imaging data. It was found that the graph theory-derived thermal history predictions converged within 30–50% of the time of non-proprietary finite element analysis for a similar level of prediction error. However, these prior efforts were based on small prismatic and cylinder-shaped LPBF parts. In this paper, our objective was to scale the graph theory approach to predict the thermal history of large volume, complex geometry LPBF parts. To realize this objective, we developed and applied three computational strategies to predict the thermal history of a stainless steel (SAE 316L) impeller having outside diameter 155 mm and vertical height 35 mm (700 layers). The impeller was processed on a Renishaw AM250 LPBF system and required 16 h to complete. During the process, in-situ layer-by-layer steady state surface temperature measurements for the impeller were obtained using a calibrated longwave infrared thermal camera. As an example of the outcome, on implementing one of the three strategies reported in this work, which did not reduce or simplify the part geometry, the thermal history of the impeller was predicted with approximate mean absolute error of 6% (standard deviation 0.8%) and root mean square error 23 K (standard deviation 3.7 K). Moreover, the thermal history was simulated within 40 min using desktop computing, which is considerably less than the 16 h required to build the impeller part. Furthermore, the graph theory thermal history predictions were compared with a proprietary LPBF thermal modeling software and non-proprietary finite element simulation. For a similar level of root mean square error (28 K), the graph theory approach converged in 17 min, vs. 4.5 h for non-proprietary finite element analysis. 
    more » « less