The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In particular, hot spots of charge storage are identified. In addition, the measurements reveal the capability to measure transient internal current effects, at a level of μA, which are shown to be dependent upon the state of charge. These effects highlight noncontact battery characterization opportunities. The diagnostic power of this technique could be used for the assessment of cells in research, quality control, or during operation, and could help uncover details of charge storage and failure processes in cells.
more »
« less
Rapid Online Solid-State Battery Diagnostics with Optically Pumped Magnetometers
Solid-state battery technology is motivated by the desire to deliver flexible power storage in a safe and efficient manner. The increasingly widespread use of batteries from mass production facilities highlights the need for a rapid and sensitive diagnostic tool for identifying battery defects. We demonstrate the use of atomic magnetometry to measure the magnetic fields around miniature solid-state battery cells. These fields encode information about battery manufacturing defects, state of charge, and impurities, and they can provide important insights into battery aging processes. Compared with SQUID-based magnetometry, the availability of atomic magnetometers, however, highlights the possibility of constructing a low-cost, portable, and flexible implementation of battery quality control and characterization technology.
more »
« less
- Award ID(s):
- 1804723
- PAR ID:
- 10274621
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 10
- Issue:
- 21
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 7864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries using noninvasive detection. We demonstrate a microwave-free alternating current (AC) magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between nitrogen-vacancy (NV) centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructively image solid-state batteries. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolution is μμμ360μm. The maximum magnetic field and phase shift generated by the battery at the modulation frequency of 5 kHz are estimated as 0.04 mT and 0.03 rad respectively.more » « less
-
Solid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er3+) ions, within the subwavelength volume of a single, silicon photonic crystal cavity. We also demonstrate subwavelength control over coherent spin rotations by using an optical AC Stark shift. Our approach may be scaled to large numbers of ions with arbitrarily small separation and is a step toward realizing strongly interacting atomic defect ensembles with applications to quantum information processing and fundamental studies of many-body dynamics.more » « less
-
Organic cathode materials have attracted significant research attention recently, yet their low electronic conductivity limits their application as solid-state cathodes in lithium batteries. This work describes the development of a novel organic cathode chemistry with significant intrinsic electronic conductivity for solid-state thin film batteries. A polymeric charge transfer complex (CTC) cathode, poly(4-vinylpyridine)-iodine monochloride (P4VP·ICl), was prepared by initiated chemical vapor deposition (iCVD). Critical chemical, physical, and electrochemical properties of the CTC complex were characterized. The complex was found to have an electronic conductivity of 4 × 10-7 S cm-1 and total conductivity of 2 × 10−6 S cm−1 at room temperature, which allows the construction of a 2.7 μm thick dense cathode. By fabricating a P4VP·ICl|LIPON|Li thin film battery, the discharge capacity of P4VP·ICl was demonstrated to be >320 mA h cm−3 on both rigid and flexible substrates. The flexible P4VP·ICl|LIPON|Li battery was prepared by simply replacing the rigid substrate with a flexible polyimide substrate and the as-prepared battery can be bent 180° while maintaining electrochemical performance.more » « less
-
The all-solid-state battery is a promising alternative to conventional lithium-ion batteries that have reached the limit of their technological capabilities. The next-generation lithium-ion batteries are expected to be eco-friendly, long-lasting, and safe while demonstrating high energy density and providing ultrafast charging. These much-needed properties require significant efforts to uncover and utilize the chemical, morphological, and electrochemical properties of solid-state electrolytes and cathode nanocomposites. Here we report solid-state electrochemical cells based on lithium oxyhalide electrolyte that is produced by melt-casting. This method results in enhanced cathode/electrolyte interfaces that allow exceptionally high charging rates (>4000C) while maintaining the electrochemical stability of solid-state electrolyte in the presence of lithium metal anode and lithium iron phosphate-based cathode. The cells exhibit long cycle life (>1800 cycles at 100 °C) and offer a promising route to the next-generation all-solid-state battery technology.more » « less
An official website of the United States government

