Spin-photon interfaces based on solid-state atomic defects have enabled a variety of key applications in quantum information processing. To maximize the light-matter coupling strength, defects are often placed inside nanoscale devices. Efficiently coupling light and microwave radiation into these structures is an experimental challenge, especially in cryogenic or high vacuum environments with limited sample access. In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit and delivers high power microwaves for driving electron spin transitions. The optical portion achieves 46% one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss at 10 Watts of input microwave power. The entire probe can be scanned across a large number of devices inside a3He cryostat without free-space optical access. We demonstrate this technique with silicon nanophotonic circuits coupled to single Er3+ions.
more »
« less
Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit
Solid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er3+) ions, within the subwavelength volume of a single, silicon photonic crystal cavity. We also demonstrate subwavelength control over coherent spin rotations by using an optical AC Stark shift. Our approach may be scaled to large numbers of ions with arbitrarily small separation and is a step toward realizing strongly interacting atomic defect ensembles with applications to quantum information processing and fundamental studies of many-body dynamics.
more »
« less
- Award ID(s):
- 1640959
- PAR ID:
- 10199807
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 370
- Issue:
- 6516
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 592-595
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Optically active spin defects in solids1,2are leading candidates for quantum sensing3,4and quantum networking5,6. Recently, single spin defects were discovered in hexagonal boron nitride (hBN)7–11, a layered van der Waals (vdW) material. Owing to its two-dimensional structure, hBN allows spin defects to be positioned closer to target samples than in three-dimensional crystals, making it ideal for atomic-scale quantum sensing12, including nuclear magnetic resonance (NMR) of single molecules. However, the chemical structures of these defects7–11remain unknown and detecting a single nuclear spin with a hBN spin defect has been elusive. Here we report the creation of single spin defects in hBN using13C ion implantation and the identification of three distinct defect types based on hyperfine interactions. We observed bothS = 1/2 andS = 1 spin states within a single hBN spin defect. We demonstrated atomic-scale NMR and coherent control of individual nuclear spins in a vdW material, with a π-gate fidelity up to 99.75% at room temperature. By comparing experimental results with density functional theory (DFT) calculations, we propose chemical structures for these spin defects. Our work advances the understanding of single spin defects in hBN and provides a pathway to enhance quantum sensing using hBN spin defects with nuclear spins as quantum memories.more » « less
-
Spin defects in silicon carbide have the advantage of exceptional electron spin coherence combined with a near-infrared spin-photon interface, all in a material amenable to modern semiconductor fabrication. Leveraging these advantages, we integrated highly coherent single neutral divacancy spins in commercially available p-i-n structures and fabricated diodes to modulate the local electrical environment of the defects. These devices enable deterministic charge-state control and broad Stark-shift tuning exceeding 850 gigahertz. We show that charge depletion results in a narrowing of the optical linewidths by more than 50-fold, approaching the lifetime limit. These results demonstrate a method for mitigating the ubiquitous problem of spectral diffusion in solid-state emitters by engineering the electrical environment while using classical semiconductor devices to control scalable, spin-based quantum systems.more » « less
-
Abstract Herein, the role that point defects have played over the last two decades in realizing solid‐state laser refrigeration is discussed. A brief introduction to the field of solid‐state laser refrigeration is given with an emphasis on the fundamental physical phenomena and quantized electronic transitions that have made solid‐state laser‐cooling possible. Lanthanide‐based point defects, such as trivalent ytterbium ions (Yb3+), have played a central role in the first demonstrations and subsequent development of advanced materials for solid‐state laser refrigeration. Significant discussion is devoted to the quantum mechanical description of optical transitions in lanthanide ions, and their influence on laser cooling. Transition‐metal point defects have been shown to generate substantial background absorption in ceramic materials, decreasing the overall efficiency of a particular laser refrigeration material. Other potential color centers based on fluoride vacancies with multiple potential charge states are also considered. In conclusion, novel materials for solid‐state laser refrigeration, including color centers in diamond that have recently been proposed to realize the solid‐state laser refrigeration of semiconducting materials, are discussed.more » « less
-
The negatively charged tin-vacancy center in diamond ( ) is an emerging platform for building the next generation of long-distance quantum networks. This is due to the ’s favorable optical and spin properties including bright emission, insensitivity to electronic noise, and long spin coherence times at temperatures above 1 K. Here, we demonstrate measurement of a single electronic spin with a single-shot readout fidelity of 87.4%, which can be further improved to 98.5% by conditioning on multiple readouts. In the process, we develop understanding of the relationship between strain, magnetic field, spin readout, and microwave spin control. We show that high-fidelity readout is compatible with rapid microwave spin control, demonstrating a favorable parameter regime for use of the center as a high-quality spin-photon interface. Finally, we use weak quantum measurement to study measurement-induced dephasing; this illuminates the fundamental interplay between measurement and decoherence in quantum mechanics, and provides a universal method to characterize the efficiency of color-center spin readout. Taken together, these results overcome an important hurdle in the development of the -based quantum technologies and, in the process, develop techniques and understanding broadly applicable to the study of solid-state quantum emitters. Published by the American Physical Society2024more » « less
An official website of the United States government
