- NSF-PAR ID:
- 10274634
- Date Published:
- Journal Name:
- SIGMOD '21: International Conference on Management of Data
- Page Range / eLocation ID:
- 155 to 167
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Near-term quantum computers are expected to work in an environment where each operation is noisy, with no error correction. Therefore, quantum-circuit optimizers are applied to minimize the number of noisy operations. Today, physicists are constantly experimenting with novel devices and architectures. For every new physical substrate and for every modification of a quantum computer, we need to modify or rewrite major pieces of the optimizer to run successful experiments. In this paper, we present QUESO, an efficient approach for automatically synthesizing a quantum-circuit optimizer for a given quantum device. For instance, in 1.2 minutes, QUESO can synthesize an optimizer with high-probability correctness guarantees for IBM computers that significantly outperforms leading compilers, such as IBM's Qiskit and TKET, on the majority (85%) of the circuits in a diverse benchmark suite. A number of theoretical and algorithmic insights underlie QUESO: (1) An algebraic approach for representing rewrite rules and their semantics. This facilitates reasoning about complex symbolic rewrite rules that are beyond the scope of existing techniques. (2) A fast approach for probabilistically verifying equivalence of quantum circuits by reducing the problem to a special form of polynomial identity testing . (3) A novel probabilistic data structure, called a polynomial identity filter (PIF), for efficiently synthesizing rewrite rules. (4) A beam-search-based algorithm that efficiently applies the synthesized symbolic rewrite rules to optimize quantum circuits.more » « less
-
We target the problem of automatically synthesizing proofs of semantic equivalence between two programs made of sequences of statements. We represent programs using abstract syntax trees (AST), where a given set of semantics-preserving rewrite rules can be applied on a specific AST pattern to generate a transformed and semantically equivalent program. In our system, two programs are equivalent if there exists a sequence of application of these rewrite rules that leads to rewriting one program into the other. We propose a neural network architecture based on a transformer model to generate proofs of equivalence between program pairs. The system outputs a sequence of rewrites, and the validity of the sequence is simply checked by verifying it can be applied. If no valid sequence is produced by the neural network, the system reports the programs as non-equivalent, ensuring by design no programs may be incorrectly reported as equivalent. Our system is fully implemented for a given grammar. To efficiently train the system to generate such sequences, we develop an original incremental training technique, named self-supervised sample selection. We extensively study the effectiveness of this novel training approach on proofs of increasing complexity and length. Our system, S4Eq, achieves 97% proof success on a curated dataset of 10,000 pairs of equivalent programs.more » « less
-
Supporting the interactive exploration of large datasets is a popular and challenging use case for data management systems. Traditionally, the interface and the back-end system are built and optimized separately, and interface design and system optimization require different skill sets that are difficult for one person to master. To enable analysts to focus on visualization design, we contribute VegaPlus, a system that automatically optimizes interactive dashboards to support large datasets. To achieve this, VegaPlus leverages two core ideas. First, we introduce an optimizer that can reason about execution plans in Vega, a back-end DBMS, or a mix of both environments. The optimizer also considers how user interactions may alter execution plan performance, and can partially or fully rewrite the plans when needed. Through a series of benchmark experiments on seven different dashboard designs, our results show that VegaPlus provides superior performance and versatility compared to standard dashboard optimization techniques.
-
Many compilers, synthesizers, and theorem provers rely on rewrite rules to simplify expressions or prove equivalences. Developing rewrite rules can be difficult: rules may be subtly incorrect, profitable rules are easy to miss, and rulesets must be rechecked or extended whenever semantics are tweaked. Large rulesets can also be challenging to apply: redundant rules slow down rule-based search and frustrate debugging. This paper explores how equality saturation, a promising technique that uses e-graphs to apply rewrite rules, can also be used to infer rewrite rules. E-graphs can compactly represent the exponentially large sets of enumerated terms and potential rewrite rules. We show that equality saturation efficiently shrinks both sets, leading to faster synthesis of smaller, more general rulesets. We prototyped these strategies in a tool dubbed Ruler. Compared to a similar tool built on CVC4, Ruler synthesizes 5.8× smaller rulesets 25× faster without compromising on proving power. In an end-to-end case study, we show Ruler-synthesized rules which perform as well as those crafted by domain experts, and addressed a longstanding issue in a popular open source tool.more » « less
-
Predicate-centric rules for rewriting queries is a key technique in optimizing queries. These include pushing down the predicate below the join and aggregation operators, or optimizing the order of evaluating predicates. However, many of these rules are only applicable when the predicate uses a certain set of columns. For example, to move the predicate below the join operator, the predicate must only use columns from one of the joined tables. By generating a predicate that satisfies these column constraints and preserves the semantics of the original query, the optimizer may leverage additional predicate-centric rules that were not applicable before. Researchers have proposed syntax-driven rewrite rules and machine learning algorithms for inferring such predicates. However, these techniques suffer from two limitations. First, they do not let the optimizer constrain the set of columns that may be used in the learned predicate. Second, machine learning algorithms do not guarantee that the learned predicate preserves semantics. In this paper, we present SIA, a system for learning predicates while being guided by counter-examples and a verification technique, that addresses these limitations. The key idea is to leverage satisfiability modulo theories to generate counter-examples and use them to iteratively learn a valid, optimal predicate. We formalize this problem by proving the key properties of synthesized predicates. We implement our approach in SIA and evaluate its efficacy and efficiency. We demonstrate that it synthesizes a larger set of valid predicates compared to prior approaches. On a collection of 200 queries derived from the TPC-H benchmark, SIA successfully rewrites 114 queries with learned predicates. 66 of these rewritten queries exhibit more than 2X speed up.more » « less