skip to main content


Title: Ultrafast laser surgery probe with a calcium fluoride miniaturized objective for bone ablation

We present a miniaturized ultrafast laser surgery probe with improved miniaturized optics to deliver higher peak powers and enable higher surgical speeds than previously possible. A custom-built miniaturized CaF2objective showed no evidence of the strong multiphoton absorption observed in our previous ZnS-based probe, enabling higher laser power delivery to the tissue surface for ablation. A Kagome fiber delivered ultrashort pulses from a high repetition rate fiber laser to the objective, producing a focal beam radius of 1.96 μm and covering a 90×90 μm2scan area. The probe delivered the maximum available fiber laser power, providing fluences >6 J/cm2at the tissue surface at 53% transmission efficiency. We characterized the probe’s performance through a parametric ablation study on bovine cortical bone and defined optimal operating parameters for surgery using an experimental- and simulation-based approach. The entire opto-mechanical system, enclosed within a 5-mm diameter housing with a 2.6-mm diameter probe tip, achieved material removal rates >0.1 mm3/min, however removal rates were ultimately limited by the available laser power. Towards a next generation surgery probe, we simulated maximum material removal rates when using a higher power fiber laser and found that removal rates >2 mm3/min could be attained through appropriate selection of laser surgery parameters. With future development, the device presented here can serve as a precise surgical tool with clinically viable speeds for delicate applications such as spinal decompression surgeries.

 
more » « less
NSF-PAR ID:
10274645
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
12
Issue:
8
ISSN:
2156-7085
Page Range / eLocation ID:
Article No. 4779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Creation of sub-epithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable therapeutic biomaterials towards an improved treatment for vocal fold scarring. Several ultrafast laser surgery probes have been developed for precise ablation of surface tissues; however, these probes lack the tight beam focusing required for sub-surface ablation in highly scattering tissues such as vocal folds. Here, we present a miniaturized ultrafast laser surgery probe designed to perform sub-epithelial ablation in vocal folds. The requirement of high numerical aperture for sub-surface ablation, in addition to the small form factor and side-firing architecture required for clinical use, made for a challenging optical design. An Inhibited Coupling guiding Kagome hollow core photonic crystal fiber delivered micro-Joule level ultrashort pulses from a high repetition rate fiber laser towards a custom-built miniaturized objective, producing a 1/e2focal beam radius of 1.12 ± 0.10 μm and covering a 46 × 46 μm2scan area. The probe could deliver up to 3.8 μJ pulses to the tissue surface at 40% transmission efficiency through the entire system, providing significantly higher fluences at the focal plane than were required for sub-epithelial ablation. To assess surgical performance, we performed ablation studies on freshly excised porcine hemi-larynges and found that large area sub-epithelial voids could be created within vocal folds by mechanically translating the probe tip across the tissue surface using external stages. Finally, injection of a model biomaterial into a 1 × 2 mm2void created 114 ± 30 μm beneath the vocal fold epithelium surface indicated improved localization when compared to direct injection into the tissue without a void, suggesting that our probe may be useful for pre-clinical evaluation of injectable therapeutic biomaterials for vocal fold scarring therapy. With future developments, the surgical system presented here may enable treatment of vocal fold scarring in a clinical setting.

     
    more » « less
  2. The creation of multiarticulated mechanisms for use with minimally invasive surgical tools is difficult because of fabrication, assembly, and actuation challenges on the millimeter scale of these devices. Nevertheless, such mechanisms are desirable for granting surgeons greater precision and dexterity to manipulate and visualize tissue at the surgical site. Here, we describe the construction of a complex optoelectromechanical device that can be integrated with existing surgical tools to control the position of a fiber-delivered laser. By using modular assembly and a laminate fabrication method, we are able to create a smaller and higher-bandwidth device than the current state of the art while achieving a range of motion similar to existing tools. The device we present is 6 millimeters in diameter and 16 millimeters in length and is capable of focusing and steering a fiber-delivered laser beam at high speed (1.2-kilohertz bandwidth) over a large range (over ±10 degrees in both of two axes) with excellent static repeatability (200 micrometers).

     
    more » « less
  3. Abstract Background

    Optical coherence tomography (OCT) has the potential to provide real‐time imaging guidance for atrial fibrillation ablation, with promising results for lesion monitoring. OCT can also offer high‐resolution imaging of tissue composition, but there is insufficient cardiac OCT data to inform the use of OCT to reveal important tissue architecture of the human left atrium. Thus, the objective of this study was to define OCT imaging data throughout the human left atrium, focusing on the distribution of adipose tissue and fiber orientation as seen from the endocardium.

    Methods and Results

    Human hearts (n = 7) were acquired for imaging the left atrium with OCT. A spectral‐domain OCT system with 1325 nm center wavelength, 6.5 μm axial resolution, 15 μm lateral resolution, and a maximum imaging depth of 2.51 mm in the air was used. Large‐scale OCT image maps of human left atrial tissue were developed, with adipose thickness and fiber orientation extracted from the imaging data. OCT imaging showed scattered distributions of adipose tissue around the septal and pulmonary vein regions, up to a depth of about 0.43 mm from the endocardial surface. The total volume of adipose tissue detected by OCT over one left atrium ranged from 1.42 to 28.74 mm3. Limited fiber orientation information primarily around the pulmonary veins and the septum could be identified.

    Conclusion

    OCT imaging could provide adjunctive information on the distribution of subendocardial adipose tissue, particularly around thin areas around the pulmonary veins and septal regions. Variations in OCT‐detected tissue composition could potentially assist ablation guidance.

     
    more » « less
  4. Background/Objectives

    Tightly‐focused ultrafast laser pulses (pulse widths of 100 fs–10 ps) provide high peak intensities to produce a spatially confined tissue ablation effect. The creation of sub‐epithelial voids within scarred vocal folds (VFs) via ultrafast laser ablation may help to localize injectable biomaterials to treat VF scarring. Here, we demonstrate the feasibility of this technique in an animal model using a custom‐designed endolaryngeal laser surgery probe.

    Methods

    Unilateral VF mucosal injuries were created in two canines. Four months later, ultrashort laser pulses (5 ps pulses at 500 kHz) were delivered via the custom laser probe to create sub‐epithelial voids of ~3 × 3‐mm2in both healthy and scarred VFs. PEG‐rhodamine was injected into these voids. Ex vivo optical imaging and histology were used to assess void morphology and biomaterial localization.

    Results

    Large sub‐epithelial voids were observed in both healthy and scarred VFs immediately following in vivo laser treatment. Two‐photon imaging and histology confirmed ~3‐mm wide subsurface voids in healthy and scarred VFs of canine #2. Biomaterial localization within a void created in the scarred VF of canine #2 was confirmed with fluorescence imaging but was not visualized during follow‐up two‐photon imaging. As an alternative, the biomaterial was injected into the excised VF and could be observed to localize within the void.

    Conclusions

    We demonstrated sub‐epithelial void formation and the ability to inject biomaterials into voids in a chronic VF scarring model. This proof‐of‐concept study provides preliminary evidence towards the clinical feasibility of such an approach to treating VF scarring using injectable biomaterials.

    Level of Evidences

    N/ALaryngoscope, 133:3042–3048, 2023

     
    more » « less
  5. A spatial heterodyne Raman spectrometer (SHRS), constructed using a modular optical cage and lens tube system, is described for use with a commercial silica and a custom single-crystal (SC) sapphire fiber Raman probe. The utility of these fiber-coupled SHRS chemical sensors is demonstrated using 532 nm laser excitation for acquiring Raman measurements of solid (sulfur) and liquid (cyclohexane) Raman standards as well as real-world, plastic-bonded explosives (PBX) comprising 1,3,5- triamino- 2,4,6- trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) energetic materials. The SHRS is a fixed grating-based dispersive interferometer equipped with an array detector. Each Raman spectrum was extracted from its corresponding fringe image (i.e., interferogram) using a Fourier transform method. Raman measurements were acquired with the SHRS Littrow wavelength set at the laser excitation wavelength over a spectral range of ∼1750 cm−1with a spectral resolution of ∼8 cm−1for sapphire and ∼10 cm−1for silica fiber probes. The large aperture of the SHRS allows much larger fiber diameters to be used without degrading spectral resolution as demonstrated with the larger sapphire collection fiber diameter (330 μm) compared to the silica fiber (100 μm). Unlike the dual silica fiber Raman probe, the dual sapphire fiber Raman probe did not include filtering at the fiber probe tip nearest the sample. Even so, SC sapphire fiber probe measurements produced less background than silica fibers allowing Raman measurements as close as ∼85 cm−1to the excitation laser. Despite the short lengths of sapphire fiber used to construct the sapphire probe, well-defined, sharp sapphire Raman bands at 420, 580, and 750 cm−1were observed in the SHRS spectra of cyclohexane and the highly fluorescent HMX-based PBX. SHRS measurements of the latter produced low background interference in the extracted Raman spectrum because the broad band fluorescence (i.e., a direct current, or DC, component) does not contribute to the interferogram intensity (i.e., the alternating current, or AC, component). SHRS spectral resolution, throughput, and signal-to-noise ratio are also discussed along with the merits of using sapphire Raman bands as internal performance references and as internal wavelength calibration standards in Raman measurements.

     
    more » « less