skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal lensing effects and nonlinear refractive indices of fluoride crystals induced by high-power ultrafast lasers
Thermo-optical and nonlinear property characterization of refractive optical components is essential for endoscopic instrumentation that utilizes high-power, high-repetition-rate ultrafast lasers. For example, ytterbium-doped fiber lasers are well suited for ultrafast laser microsurgery applications; however, the thermo-optical responses of many common lens substrates are not well understood at 1035 nm wavelength. Using a z -scan technique, we first measured the nonlinear refractive indices of C a F 2 , M g F 2 , and B a F 2 at 1035 nm and found values that match well with those from the literature at 1064 nm. To elucidate effects of thermal lensing, we performed z -scans at multiple laser repetition rates and multiple average powers. The results showed negligible thermal effects up to an average power of 1 W and at 10 W material-specific thermal lensing significantly altered z -scan measurements. Using a 2D temperature model, we could determine the source of the observed thermal lensing effects. Linear absorption was determined as the main source of heating in these crystals. On the other hand, inclusion of nonlinear absorption as an additional heat source in the simulations showed that thermal lensing in borosilicate glass was strongly influenced by nonlinear absorption. This method can potentially provide a sensitive method to measure small nonlinear absorption coefficients of transparent optical materials. These results can guide design of miniaturized optical systems for ultrafast laser surgery and deep-tissue imaging probes.  more » « less
Award ID(s):
1805998
PAR ID:
10194903
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
59
Issue:
28
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 8806
Size(s):
Article No. 8806
Sponsoring Org:
National Science Foundation
More Like this
  1. The measurement and stabilization of the carrier–envelope offset frequency f C E O via self-referencing is paramount for optical frequency comb generation, which has revolutionized precision frequency metrology, spectroscopy, and optical clocks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficient f C E O stabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize an f - 2 f interferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. The f C E O beatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second-harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation of a strong f C E O signal as compared to a traditional f - 2 f interferometer. Our technology provides a highly simplified system that is robust, low in cost, and adaptable for precision metrology for use outside a research laboratory. 
    more » « less
  2. We present the optical and structural characterization of films of T a 2 O 5 , S c 2 O 3 , and S c 2 O 3 doped T a 2 O 5 with a cation ratio around 0.1 grown by reactive sputtering. The addition of S c 2 O 3 as a dopant induces the formation of tantalum suboxide due to the “oxygen getter” property of scandium. The presence of tantalum suboxide greatly affects the optical properties of the coating, resulting in higher absorption loss at λ<#comment/> = 1064 n m . The refractive index and optical band gap of the mixed film do not correspond to those of a mixture of T a 2 O 5 and S c 2 O 3 , given the profound structural modifications induced by the dopant. 
    more » « less
  3. We perform single-shot frequency domain holography to measure the ultrafast spatio-temporal phase change induced by the optical Kerr effect and plasma in flexible Corning Willow Glass during femtosecond laser–matter interactions. We measure the nonlinear index of refraction ( n 2 ) to be ( 3.6 ±<#comment/> 0.1 ) ×<#comment/> 10 −<#comment/> 16 c m 2 / W and visualize the plasma formation and recombination on femtosecond time scales in a single shot. To compare with the experiment, we carry out numerical simulations by solving the nonlinear envelope equation. 
    more » « less
  4. Optical coatings formed from amorphous oxide thin films have many applications in precision measurements. The Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo use coatings of S i O 2 (silica) and T i O 2 : T a 2 O 5 (titania-doped tantala) and post-deposition annealing to 500°C to achieve low thermal noise and low optical absorption. Optical scattering by these coatings is a key limit to the sensitivity of the detectors. This paper describes optical scattering measurements for single-layer, ion-beam-sputtered thin films on fused silica substrates: two samples of T a 2 O 5 and two of T i O 2 : T a 2 O 5 . Using an imaging scatterometer at a fixed scattering angle of 12.8°, in-situ changes in the optical scatter of each sample were assessed during post-deposition annealing to 500°C in vacuum. The scatter of three of the four coated optics was observed to decrease during the annealing process, by 25–30% for tantala and up to 74% for titania-doped tantala, while the scatter from the fourth sample held constant. Angle-resolved scatter measurements performed before and after vacuum annealing suggest some improvement in three of the four samples. These results demonstrate that post-deposition, high-temperature annealing of single-layer tantala and titania-doped tantala thin films in vacuum does not lead to an increase in scatter, and may actually improve their scatter. 
    more » « less
  5. Amorphous tantala ( T a 2 O 5 ) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist A r + or A r + / O 2 + bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV A r + . A detrimental influence from low energy O 2 + bombardment on absorption loss and mechanical loss is observed. Low energy A r + bombardment removes excess oxygen point defects, while O 2 + bombardment introduces defects into the tantala films. 
    more » « less