skip to main content


Title: High blocking temperatures for DyScS endohedral fullerene single-molecule magnets
Dy-based single-molecule magnets (SMMs) are of great interest due to their ability to exhibit very large thermal barriers to relaxation and therefore high blocking temperatures. One interesting line of investigation is Dy-encapsulating endohedral clusterfullerenes, in which a carbon cage protects magnetic Dy 3+ ions against decoherence by environmental noise and allows for the stabilization of bonding and magnetic interactions that would be difficult to achieve in other molecular architectures. Recent studies of such materials have focused on clusters with two Dy atoms, since ferromagnetic exchange between Dy atoms is known to reduce the rate of magnetic relaxation via quantum tunneling. Here, two new dysprosium-containing mixed-metallic sulfide clusterfullerenes, DyScS@ C s (6)–C 82 and DyScS@ C 3v (8)–C 82 , have been successfully synthesized, isolated and characterized by mass spectrometry, Vis-NIR, cyclic voltammetry, single crystal X-ray diffractometry, and magnetic measurements. Crystallographic analyses show that the conformation of the encapsulated cluster inside the fullerene cages is notably different than in the Dy 2 X@ C s (6)–C 82 and Dy 2 X@ C 3v (8)–C 82 (X = S, O) analogues. Remarkably, both isomers of DyScS@C 82 show open magnetic hysteresis and slow magnetic relaxation, even at zero field. Their magnetic blocking temperatures are around 7.3 K, which are among the highest values reported for clusterfullerene SMMs. The SMM properties of DyScS@C 82 far outperform those of the dilanthanide analogues Dy 2 S@C 82 , in contrast to the trend observed for carbide and nitride Dy clusterfullerenes.  more » « less
Award ID(s):
1801317 1827875
NSF-PAR ID:
10274678
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
48
ISSN:
2041-6520
Page Range / eLocation ID:
13129 to 13136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of dysprosium( iii ) metallocenium salts, [Dy(Cp iPr4R ) 2 ][B(C 6 F 5 ) 4 ] (R = H ( 1 ), Me ( 2 ), Et ( 3 ), iPr ( 4 )), was synthesized by reaction of DyI 3 with the corresponding known NaCp iPr4R (R = H, iPr) and novel NaCp iPr4R (R = Me, Et) salts at high temperature, followed by iodide abstraction with [H(SiEt 3 ) 2 ][B(C 6 F 5 ) 4 ]. Variation of the substituents in this series results in substantial changes in molecular structure, with more sterically-encumbering cyclopentadienyl ligands promoting longer Dy–C distances and larger Cp–Dy–Cp angles. Dc and ac magnetic susceptibility data reveal that these structural changes have a considerable impact on the magnetic relaxation behavior and operating temperature of each compound. In particular, the magnetic relaxation barrier increases as the Dy–C distance decreases and the Cp–Dy–Cp angle increases. An overall 45 K increase in the magnetic blocking temperature is observed across the series, with compounds 2–4 exhibiting the highest 100 s blocking temperatures yet reported for a single-molecule magnet. Compound 2 possesses the highest operating temperature of the series with a 100 s blocking temperature of 62 K. Concomitant increases in the effective relaxation barrier and the maximum magnetic hysteresis temperature are observed, with 2 displaying a barrier of 1468 cm −1 and open magnetic hysteresis as high as 72 K at a sweep rate of 3.1 mT s −1 . Magneto-structural correlations are discussed with the goal of guiding the synthesis of future high operating temperature Dy III metallocenium single-molecule magnets. 
    more » « less
  2. Abstract

    Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low‐dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self‐assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene‐SMM DySc2N@C80and Dy2ScN@C80are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X‐ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self‐assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80grafted on gold is sustained up to 10 K. This study demonstrates that self‐assembly of fullerene‐SMM derivatives offers a facile solution‐based procedure for the preparation of functional magnetic sub‐monolayers with excellent SMM performance.

     
    more » « less
  3. null (Ed.)
    The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me 6 tren) 2 MII2(C 6 H 4 O 2 2− )] 2+ (Me 6 tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me 6 tren) 2 MII2(C 6 H 4 O 2 − ˙)] 3+ . Single-crystal X-ray diffraction shows that the Me 6 tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p -benzosemiquinone–transition metal magnetic exchange coupling for the first time and find that the nickel( ii ) complex exhibits a substantial J < −600 cm −1 , resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal–semiquinone exchange constants of J = −144(1) and −252(2) cm −1 , respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of U eff = 22 and 46 cm −1 , respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear Ni II complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation. 
    more » « less
  4. null (Ed.)
    Utilizing a terphenyl bisanilide ligand, two Dy( iii ) compounds [K(DME) n ][L Ar Dy(X) 2 ] (L Ar = {C 6 H 4 [(2,6- i PrC 6 H 3 )NC 6 H 4 ] 2 } 2− ), X = Cl ( 1 ) and X = I ( 2 ) were synthesized. The ligand imposes an unusual see-saw shaped molecular geometry leading to a coordinatively unsaturated metal complex with near-linear N–Dy–N (avg. 159.9° for 1 and avg. 160.4° for 2 ) angles. These compounds exhibit single-molecule magnet (SMM) behavior with significant uniaxial magnetic anisotropy as a result of the transverse coordination of the bisanilide ligand which yields high energy barriers to magnetic spin reversal of U eff = 1334 K/927 cm −1 ( 1 ) and 1278 K/888 cm −1 ( 2 ) in zero field. Ab initio calculations reveal that the dominant crystal field of the bisanilide ligand controls the orientation of the main magnetic axis which runs nearly parallel to the N–Dy–N bonds, despite the identity of the halide ligand. Analysis of the relaxation dynamics reveals a ca. 14-fold decrease in the rate of quantum tunneling of the magnetisation when X = I ( 2 ). Most notably, the relaxation times were on average 5.6× longer at zero field when the heavier group 17 congener was employed. However, no direct evidence of a heavy atom effect on the Orbach relaxation was obtained as the height of the barrier is defined by the dominant bisanilide ligand. 
    more » « less
  5. Recently, the choice of ligand and geometric control of mononuclear complexes, which can affect the relaxation pathways and blocking temperature, have received wide attention in the field of single-ion magnets (SIMs). To find out the influence of the coordination environment on SIMs, two four-coordinate mononuclear Co( ii ) complexes [NEt 4 ][Co(PPh 3 )X 3 ] (X = Cl − , 1; Br − , 2) have been synthesized and studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes are in a cubic space group Pa 3̄ (No. 205), containing a slightly distorted tetrahedral moiety with crystallographically imposed C 3 v symmetry through the [Co(PPh 3 )X 3 ] − anion. The direct-current (dc) magnetic data and HF-EPR spectroscopy indicated the anisotropic S = 3/2 spin ground states of the Co( ii ) ions with the easy-plane anisotropy for 1 and 2. Ab initio calculations were performed to confirm the positive magnetic anisotropies of 1 and 2. Frequency- and temperature-dependent alternating-current (ac) magnetic susceptibility measurements revealed slow magnetic relaxation for 1 and 2 at an applied dc field. Finally, the magnetic properties of 1 and 2 were compared to those of other Co( ii ) complexes with a [CoAB 3 ] moiety. 
    more » « less