skip to main content


Title: High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium( iii ) metallocenium single-molecule magnets
A series of dysprosium( iii ) metallocenium salts, [Dy(Cp iPr4R ) 2 ][B(C 6 F 5 ) 4 ] (R = H ( 1 ), Me ( 2 ), Et ( 3 ), iPr ( 4 )), was synthesized by reaction of DyI 3 with the corresponding known NaCp iPr4R (R = H, iPr) and novel NaCp iPr4R (R = Me, Et) salts at high temperature, followed by iodide abstraction with [H(SiEt 3 ) 2 ][B(C 6 F 5 ) 4 ]. Variation of the substituents in this series results in substantial changes in molecular structure, with more sterically-encumbering cyclopentadienyl ligands promoting longer Dy–C distances and larger Cp–Dy–Cp angles. Dc and ac magnetic susceptibility data reveal that these structural changes have a considerable impact on the magnetic relaxation behavior and operating temperature of each compound. In particular, the magnetic relaxation barrier increases as the Dy–C distance decreases and the Cp–Dy–Cp angle increases. An overall 45 K increase in the magnetic blocking temperature is observed across the series, with compounds 2–4 exhibiting the highest 100 s blocking temperatures yet reported for a single-molecule magnet. Compound 2 possesses the highest operating temperature of the series with a 100 s blocking temperature of 62 K. Concomitant increases in the effective relaxation barrier and the maximum magnetic hysteresis temperature are observed, with 2 displaying a barrier of 1468 cm −1 and open magnetic hysteresis as high as 72 K at a sweep rate of 3.1 mT s −1 . Magneto-structural correlations are discussed with the goal of guiding the synthesis of future high operating temperature Dy III metallocenium single-molecule magnets.  more » « less
Award ID(s):
1464841
NSF-PAR ID:
10085262
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
9
Issue:
45
ISSN:
2041-6520
Page Range / eLocation ID:
8492 to 8503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein we report heteroleptic Co( ii ) diimine complexes [Co(H 2 bip) 2 Cl 2 ] ( 1 ), [Co(H 2 bip) 2 Br 2 ] ( 2 ), [Co(H 2 bip) 3 ]Br 2 ·1MeOH ( 3 ) and [Co(H 2 bip) 2 (Me 2 bpy)]Br 2 ·(MeCN) 0.5 ·(H 2 O) 0.25 ( 4 ) (H 2 bip = 2,2′-bi-1,4,5,6-tetrahydropyrimidine, bpy = 2,2′-dipyridyl, Me 2 bpy = 4,4′-Me-2,2′-dipyridyl), purposefully prepared to enable a systematic study of magnetic property changes arising from the increase of overall ligand field from σ/π-donor chlorido ( 1 ) to π-acceptor 4,4′Me-2,2′bpy ( 4 ). The presence of axial and rhombic anisotropy ( D and E ) of these compounds is sufficient to allow 1–4 to show field-induced slow relaxation of magnetization. Interestingly, we found as the effective ligand field is increased in the series, rhombicity ( E / D ) decreases, and the magnetic relaxation profile changes significantly, where relaxation of magnetization at a specific temperature becomes gradually faster. We performed mechanistic analyses of the temperature dependence of magnetic relaxation times considering Orbach relaxation processes, Raman-like relaxation and quantum tunnelling of magnetization (QTM). The effective energy barrier of the Orbach relaxation process ( U eff ) is largest in compound 1 (19.2 cm −1 ) and gradually decreases in the order 1 > 2 > 3 > 4 giving a minimum value in compound 4 (8.3 cm −1 ), where the Raman-like mechanism showed the possibility of different types of phonon activity below and above ∼2.5 K. As a precursor of 1 , the tetrahedral complex [Co(H 2 bip)Cl 2 ] ( 1a ) was also synthesized and structurally and magnetically characterized: this compound exhibits slow relaxation of magnetization under an applied dc field (1800 Oe) with a record slow relaxation time of 3.39 s at 1.8 K. 
    more » « less
  2. null (Ed.)
    Utilizing a terphenyl bisanilide ligand, two Dy( iii ) compounds [K(DME) n ][L Ar Dy(X) 2 ] (L Ar = {C 6 H 4 [(2,6- i PrC 6 H 3 )NC 6 H 4 ] 2 } 2− ), X = Cl ( 1 ) and X = I ( 2 ) were synthesized. The ligand imposes an unusual see-saw shaped molecular geometry leading to a coordinatively unsaturated metal complex with near-linear N–Dy–N (avg. 159.9° for 1 and avg. 160.4° for 2 ) angles. These compounds exhibit single-molecule magnet (SMM) behavior with significant uniaxial magnetic anisotropy as a result of the transverse coordination of the bisanilide ligand which yields high energy barriers to magnetic spin reversal of U eff = 1334 K/927 cm −1 ( 1 ) and 1278 K/888 cm −1 ( 2 ) in zero field. Ab initio calculations reveal that the dominant crystal field of the bisanilide ligand controls the orientation of the main magnetic axis which runs nearly parallel to the N–Dy–N bonds, despite the identity of the halide ligand. Analysis of the relaxation dynamics reveals a ca. 14-fold decrease in the rate of quantum tunneling of the magnetisation when X = I ( 2 ). Most notably, the relaxation times were on average 5.6× longer at zero field when the heavier group 17 congener was employed. However, no direct evidence of a heavy atom effect on the Orbach relaxation was obtained as the height of the barrier is defined by the dominant bisanilide ligand. 
    more » « less
  3. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  4. null (Ed.)
    Dy-based single-molecule magnets (SMMs) are of great interest due to their ability to exhibit very large thermal barriers to relaxation and therefore high blocking temperatures. One interesting line of investigation is Dy-encapsulating endohedral clusterfullerenes, in which a carbon cage protects magnetic Dy 3+ ions against decoherence by environmental noise and allows for the stabilization of bonding and magnetic interactions that would be difficult to achieve in other molecular architectures. Recent studies of such materials have focused on clusters with two Dy atoms, since ferromagnetic exchange between Dy atoms is known to reduce the rate of magnetic relaxation via quantum tunneling. Here, two new dysprosium-containing mixed-metallic sulfide clusterfullerenes, DyScS@ C s (6)–C 82 and DyScS@ C 3v (8)–C 82 , have been successfully synthesized, isolated and characterized by mass spectrometry, Vis-NIR, cyclic voltammetry, single crystal X-ray diffractometry, and magnetic measurements. Crystallographic analyses show that the conformation of the encapsulated cluster inside the fullerene cages is notably different than in the Dy 2 X@ C s (6)–C 82 and Dy 2 X@ C 3v (8)–C 82 (X = S, O) analogues. Remarkably, both isomers of DyScS@C 82 show open magnetic hysteresis and slow magnetic relaxation, even at zero field. Their magnetic blocking temperatures are around 7.3 K, which are among the highest values reported for clusterfullerene SMMs. The SMM properties of DyScS@C 82 far outperform those of the dilanthanide analogues Dy 2 S@C 82 , in contrast to the trend observed for carbide and nitride Dy clusterfullerenes. 
    more » « less
  5. Two new homoleptic Dy III compounds [Dy(Tp Me2 ) 2 ][DyCl 3 (Tp Me2 )]·CH 2 Cl 2 ( 1 ) and [Dy(Tp Me2 ) 2 ]I ( 3 ) as well as a heteroleptic (NMe 4 )[DyCl 3 (Tp Me2 )] ( 2 ) (Tp Me2 = tris(3,5-dimethylpyrazolyl)borate) species are reported. Magnetic studies revealed that 1 is a single-molecule magnet (SMM) with an energy barrier of U eff = 80.7 K with τ 0 = 6.2 × 10 −7 s under a zero applied field. Compound 3 exhibits a U eff of 13.5 K with τ 0 = 1.6 × 10 −6 s under a 0.08 T applied field. Ab initio CASSCF + RASSI-SO calculations were performed to further investigate the magnetic behavior of complexes 1–3 . The results support experimental magnetic data for 1 and 3 and indicate that an intermolecular dipolar interaction of ( zJ = −0.1 cm −1 ) is responsible for the SMM behavior of 1 . 
    more » « less