skip to main content


Title: Encoded Check Driven Concurrent Error Detection in Particle Filters for Nonlinear State Estimation
In this paper we propose a framework for concurrent detection of soft computation errors in particle filters which are finding increasing use in robotics applications. The particle filter works by sampling the multi-variate probability distribution of the states of a system (samples called particles, each particle representing a vector of states) and projecting these into the future using appropriate nonlinear mappings. We propose the addition of a `check' state to the system as a linear combination of the system states for error detection. The check state produces an error signal corresponding to each particle, whose statistics are tracked across a sliding time window. Shifts in the error statistics across all particles are used to detect soft computation errors as well as anomalous sensor measurements. Simulation studies indicate that errors in particle filter computations can be detected with high coverage and low latency.  more » « less
Award ID(s):
1723997
NSF-PAR ID:
10274775
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International On-Line Testing Conference
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reliability of emerging neuromorphic compute fabrics is of great concern due to their widespread use in critical data-intensive applications. Ensuring such reliability is difficult due to the intensity of underlying computations (billions of parameters), errors induced by low power operation and the complex relationship between errors in computations and their effect on network performance accuracy. We study the problem of designing error-resilient neuromorphic systems where errors can stem from: (a) soft errors in computation of matrix-vector multiplications and neuron activations, (b) malicious trojan and adversarial security attacks and (c) effects of manufacturing process variations on analog crossbar arrays that can affect DNN accuracy. The core principle of error detection relies on embedded predictive neuron checks using invariants derived from the statistics of nominal neuron activation patterns of hidden layers of a neural network. Algorithmic encodings of hidden neuron function are also used to derive invariants for checking. A key contribution is designing checks that are robust to the inherent nonlinearity of neuron computations with minimal impact on error detection coverage. Once errors are detected, they are corrected using probabilistic methods due to the difficulties involved in exact error diagnosis in such complex systems. The technique is scalable across soft errors as well as a range of security attacks. The effects of manufacturing process variations are handled through the use of compact tests from which DNN performance can be assessed using learning techniques. Experimental results on a variety of neuromorphic test systems: DNNs, spiking networks and hyperdimensional computing are presented. 
    more » « less
  2. Abstract

    We investigate the performance of a class of particle filters (PFs) that can automatically tune their computational complexity by evaluating online certain predictive statistics which are invariant for a broad class of state-space models. To be specific, we propose a family of block-adaptive PFs based on the methodology of Elvira et al. (IEEE Trans Signal Process 65(7):1781–1794, 2017). In this class of algorithms, the number of Monte Carlo samples (known asparticles) is adjusted periodically, and we prove that the theoretical error bounds of the PF actually adapt to the updates in the number of particles. The evaluation of the predictive statistics that lies at the core of the methodology is done by generatingfictitious observations, i.e., particles in the observation space. We study, both analytically and numerically, the impact of the numberKof these particles on the performance of the algorithm. In particular, we prove that if the predictive statistics withKfictitious observations converged exactly, then the particle approximation of the filtering distribution would match the firstKelements in a series of moments of the true filter. This result can be understood as a converse to some convergence theorems for PFs. From this analysis, we deduce an alternative predictive statistic that can be computed (for some models) without sampling any fictitious observations at all. Finally, we conduct an extensive simulation study that illustrates the theoretical results and provides further insights into the complexity, performance and behavior of the new class of algorithms.

     
    more » « less
  3. Abstract

    The leakage of quantum information out of the two computational states of a qubit into other energy states represents a major challenge for quantum error correction. During the operation of an error-corrected algorithm, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of the logical error with scale, thus challenging the feasibility of quantum error correction as a path towards fault-tolerant quantum computation. Here, we demonstrate a distance-3 surface code and distance-21 bit-flip code on a quantum processor for which leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a tenfold reduction in the steady-state leakage population of the data qubits encoding the logical state and an average leakage population of less than 1 × 10−3throughout the entire device. Our leakage removal process efficiently returns the system back to the computational basis. Adding it to a code circuit would prevent leakage from inducing correlated error across cycles. With this demonstration that leakage can be contained, we have resolved a key challenge for practical quantum error correction at scale.

     
    more » « less
  4. Online reinforcement learning (RL) based systems are being increasingly deployed in a variety of safety-critical applications ranging from drone control to medical robotics. These systems typically use RL onboard rather than relying on remote operation from high-performance datacenters. Due to the dynamic nature of the environments they work in, onboard RL hardware is vulnerable to soft errors from radiation, thermal effects and electrical noise that corrupt the results of computations. Existing approaches to on-line error resilience in machine learning systems have relied on availability of the large training datasets to configure resilience parameters, which is not necessarily feasible for online RL systems. Similarly, other approaches involving specialized hardware or modifications to training algorithms are difficult to implement for onboard RL applications. In contrast, we present a novel error resilience approach for online RL that makes use of running statistics collected across the (real-time) RL training process to configure error detection thresholds without the need to access a reference training dataset. In this methodology, statistical concentration bounds leveraging running statistics are used to diagnose neuron outputs as erroneous. These erroneous neurons are then set to zero (suppressed). Our approach is compared against the state of the art and validated on several RL algorithms involving the use of multiple concentration bounds on CPU as well as GPU hardware. 
    more » « less
  5. Abstract Indistinguishability of particles is a fundamental principle of quantum mechanics 1 . For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged 2,3 . However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions 4–8 . Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals 9–22 , the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons 9,10 , we implement a generalized stabilizer code and unitary protocol 23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing. 
    more » « less