skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Substrate-immobilized noble metal nanoplates: a review of their synthesis, assembly, and application
Noble metal nanoplates are a unique class of two-dimensional (2D) nanomaterials whose planar geometry serves as one of the most important nanoscale building blocks. Referred to by names such as nanoplates, nanodisks, nanoprisms, and nanotriangles, they offer a distinct and compelling set of physicochemical properties renowned for their plasmonic response and catalytic activity. When immobilized on substrates, these same structures are empowered with new capabilities triggered by synergistic interactions with their support and coupling phenomena activated when adjacent nanostructures are held in place with nanometer-scale spacings. In this review, we bring together an impressive literature dedicated to the synthesis, assembly, and application of substrate-immobilized noble metal nanoplates where we highlight the interplay between the nanostructures and their support as a means for deriving a distinct and diverse product. Methods for obtaining substrate-bound nanoplates rely on colloid-to-substrate transfers or syntheses occurring directly on the substrate-surface and span a wide range of techniques including chemisorption, solvent evaporation assembly, air–liquid interfacial assembly, substrate- and seed-mediated syntheses, electrochemical syntheses, vapor-phase depositions, DNA-assisted assembly, and capillary assembly. Collectively, these techniques realize nanoplate formations that are random, close-packed assemblies, periodic arrays, and three-dimensional superlattices. Nanoplate functionality is demonstrated in sensor applications with a broad range of analytes that include explosives, environmentally persistent pollutants, illicit drugs, and microRNA biomarkers for cancer and cardiovascular disease, with proof-of-concept demonstrations as active plasmonics, skin-mountable sensors, point-of-care diagnostics, and electrochemical reactors. Together, this work demonstrates substrate-immobilized nanoplates as a powerful platform for realizing photo- and chemically-active surfaces of technological relevance.  more » « less
Award ID(s):
1803917 1911991
PAR ID:
10274917
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Colloidal growth modes reliant on the replication of the crystalline character of a preexisting seed through homoepitaxial or heteroepitaxial depositions have enriched both the architectural diversity and functionality of noble metal nanostructures. Equivalent syntheses, when practiced on seeds formed on a crystalline substrate, must reconcile with the fact that the substrate enters the syntheses as a chemically distinct bulk-scale component that has the potential to impose its own epitaxial influences. Herein, we provide an understanding of the formation of epitaxial interfaces within the context of a hybrid growth mode that sees substrate-based seeds fabricated at high temperatures in the vapor phase on single-crystal oxide substrates and then exposed to a low-temperature liquid-phase synthesis yielding highly faceted nanostructures with a single-crystal character. Using two representative syntheses in which gold nanoplates and silver–platinum core–shell structures are formed, it is shown that the hybrid system behaves unconventionally in terms of epitaxy in that the substrate imposes an epitaxial relationship on the seed but remains relatively inactive as the metal seed imposes an epitaxial relationship on the growing nanostructure. With epitaxy transduced from substrate to seed to nanostructure through what is, in essence, a relay system, all of the nanostructures formed in a given synthesis end up with the same crystallographic orientation relative to the underlying substrate. This work advances the use of substrate-induced epitaxy as a synthetic control in the fabrication of on-chip devices reliant on the collective response of identically aligned nanostructures. 
    more » « less
  2. Relative to conventional chemical approaches, electrochemical assembly of metal chalcogenide nanoparticles enables the use of two additional levers for tuning the assembly process: electrode material and potential. In our prior work, oxidative and metal-mediated pathways for electrochemical assembly of metal chalcogenide quantum dots (QDs) into three-dimensional gel architectures were investigated independently by employing a noble-metal (Pt) electrode at relatively high potentials and a non-noble metal electrode at relatively low potentials, respectively. In the present work, we reveal competition between the two electrogelation pathways under the condition of high oxidation potentials and non-noble metal electrodes (including Ni, Co, Zn, and Ag), where both pathways are active. We found that the electrogel structure formed under this condition is electrode material-dependent. For Ni, the major phase is oxidative electrogel, not a potential-dependent mixture of oxidative and metal-mediated electrogel that one would expect. A mechanistic study reveals that the metal-mediated electrogelation is suppressed by dithiolates, a side product from the oxidative electrogelation, which block the Ni electrode surface and terminate metal ion release. In contrast, for Co, Ag, and Zn, the electrode surface blockage by dithiolates is less effective than for Ni, such that metal-mediated electrogelation is the primary gelation pathway. 
    more » « less
  3. The fundamental and n = 3 overtones of Au nanoplate thickness vibrations have been studied by transient absorption microscopy. The frequencies of the n = 3 overtone are less than 3× the frequency of the fundamental. This anharmonicity is explained through a continuum mechanics model that includes organic layers on top of the nanoplate and between the nanoplate and the glass substrate. In this model, anharmonicity arises from coupling between the vibrations of the nanoplate and the organic layers, which creates avoided crossings that reduce the overtone frequencies compared to the fundamental. Comparison of the experimental and calculated quality factors shows that coupling occurs to the top organic layer. Good agreement between the measured and calculated quality factors is obtained by introducing internal damping for the nanoplate. These results show that engineering layers of soft material around metal nanostructures can be used to control the vibrational lifetimes. 
    more » « less
  4. Abstract Noble‐metal nanostructures have emerged as a category of efficient and versatile peroxidase mimics in recent years. Enhancing their peroxidase‐like activities is essential to the realization of certain applications. In this review, we focus on how to engineer noble‐metal nanostructures with enhanced peroxidase‐like activities. The article is organized by introducing the impacts of surface capping ligands, particle size, shape, elemental composition, and internal structure as key parameters for the peroxidase‐like activity of noble‐metal nanostructures. Emphasis is given to the controlled synthesis of nanostructures and their peroxidase‐like catalytic efficiencies. At the end, we provide a perspective on future developments in the research relevant to peroxidase mimics of noble metals. 
    more » « less
  5. Both noble metal nanoparticles (NPs) and chalcopyrite (CuFeS2) nanocrystals (NCs) provide resonant absorption in the visible, albeit through different mechanisms. Coherent oscillations of free conduction band electrons give rise to localized plasmons in noble metal NPs, whereas collective oscillations of bound electrons are responsible for quasistatic resonances in CuFeS2 NCs. This manuscript reviews the photophysical and photocatalytic properties of both noble metal and chalcopyrite nanostructures as well as direct and indirect charge and energy transfer processes in hybrid structures containing noble metal NPs and either semiconductor NCs or molecular photosensitizers or photocatalysts. CuFeS2 NCs share structural similarities with conventional semiconductor NCs, but the availability of collective charge oscillations in the visible facilitates a resonant coupling to localized plasmons in NPs. Hybrid nanostructures containing both metal and chalcopyrite building blocks are examined as a platform for wavelength-dependent charge and energy transfer and bifunctional reactivity for enhanced plasmonic photocatalysis. 
    more » « less