skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatically evaluating balance using machine learning and data from a single inertial measurement unit
Abstract BackgroundRecently, machine learning techniques have been applied to data collected from inertial measurement units to automatically assess balance, but rely on hand-engineered features. We explore the utility of machine learning to automatically extract important features from inertial measurement unit data for balance assessment. FindingsTen participants with balance concerns performed multiple balance exercises in a laboratory setting while wearing an inertial measurement unit on their lower back. Physical therapists watched video recordings of participants performing the exercises and rated balance on a 5-point scale. We trained machine learning models using different representations of the unprocessed inertial measurement unit data to estimate physical therapist ratings. On a held-out test set, we compared these learned models to one another, to participants’ self-assessments of balance, and to models trained using hand-engineered features. Utilizing the unprocessed kinematic data from the inertial measurement unit provided significant improvements over both self-assessments and models using hand-engineered features (AUROC of 0.806 vs. 0.768, 0.665). ConclusionsUnprocessed data from an inertial measurement unit used as input to a machine learning model produced accurate estimates of balance performance. The ability to learn from unprocessed data presents a potentially generalizable approach for assessing balance without the need for labor-intensive feature engineering, while maintaining comparable model performance.  more » « less
Award ID(s):
1804945
PAR ID:
10275015
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
18
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate balance assessment is important in healthcare for identifying and managing conditions affecting stability and coordination. It plays a key role in preventing falls, understanding movement disorders, and designing appropriate therapeutic interventions across various age groups and medical conditions. However, traditional balance assessment methods often suffer from subjectivity, lack of comprehensive balance assessments and remote assessment capabilities, and reliance on specialized equipment and expert analysis. In response to these challenges, our study introduces an innovative approach for estimating scores on the Modified Clinical Test of Sensory Interaction on Balance (m-CTSIB). Utilizing wearable sensors and advanced machine learning algorithms, we offer an objective, accessible, and efficient method for balance assessment. We collected comprehensive movement data from 34 participants under four different sensory conditions using an array of inertial measurement unit (IMU) sensors coupled with a specialized system to evaluate ground truth m-CTSIB balance scores for our analysis. This data was then preprocessed, and an extensive array of features was extracted for analysis. To estimate the m-CTSIB scores, we applied Multiple Linear Regression (MLR), Support Vector Regression (SVR), and XGBOOST algorithms. Our subject-wise Leave-One-Out and 5-Fold cross-validation analysis demonstrated high accuracy and a strong correlation with ground truth balance scores, validating the effectiveness and reliability of our approach. Key insights were gained regarding the significance of specific movements, feature selection, and sensor placement in balance estimation. Notably, the XGBOOST model, utilizing the lumbar sensor data, achieved outstanding results in both methods, with Leave-One-Out cross-validation showing a correlation of 0.96 and a Mean Absolute Error (MAE) of 0.23 and 5-fold cross-validation showing comparable results with a correlation of 0.92 and an MAE of 0.23, confirming the model’s consistent performance. This finding underlines the potential of our method to revolutionize balance assessment practices, particularly in settings where traditional methods are impractical or inaccessible. 
    more » « less
  2. BackgroundClinical prediction models suffer from performance drift as the patient population shifts over time. There is a great need for model updating approaches or modeling frameworks that can effectively use the old and new data. ObjectiveBased on the paradigm of transfer learning, we aimed to develop a novel modeling framework that transfers old knowledge to the new environment for prediction tasks, and contributes to performance drift correction. MethodsThe proposed predictive modeling framework maintains a logistic regression–based stacking ensemble of 2 gradient boosting machine (GBM) models representing old and new knowledge learned from old and new data, respectively (referred to as transfer learning gradient boosting machine [TransferGBM]). The ensemble learning procedure can dynamically balance the old and new knowledge. Using 2010-2017 electronic health record data on a retrospective cohort of 141,696 patients, we validated TransferGBM for hospital-acquired acute kidney injury prediction. ResultsThe baseline models (ie, transported models) that were trained on 2010 and 2011 data showed significant performance drift in the temporal validation with 2012-2017 data. Refitting these models using updated samples resulted in performance gains in nearly all cases. The proposed TransferGBM model succeeded in achieving uniformly better performance than the refitted models. ConclusionsUnder the scenario of population shift, incorporating new knowledge while preserving old knowledge is essential for maintaining stable performance. Transfer learning combined with stacking ensemble learning can help achieve a balance of old and new knowledge in a flexible and adaptive way, even in the case of insufficient new data. 
    more » « less
  3. Abstract AimsTo examine how perceived balance problems are associated with self‐reported falls in the past month after controlling for known correlates of falls among older adults. BackgroundApproximately 30% of adults age 65 and older fall each year. Most accidental falls are preventable, and older adults' engagement in fall prevention is imperative. Limited research suggest that older adults do not use the term ‘fall risk’ to describe their risk for falls. Instead, they commonly use the term ‘balance problems’. Yet, commonly used fall risk assessment tools in both primary and acute care do not assess older adults' perceived balance. Design and MethodThe Health Belief Model and the concept of perceived susceptibility served as the theoretical framework. A retrospective, cross‐sectional secondary analysis using data from the National Health and Aging Trends Study from year 2015 was conducted. The outcome variable was self‐reported falls in the last month. ResultsA subsample of independently living participants (N = 7499) was selected, and 10.3% of the sample reported a fall. Multiple logistic regression analysis revealed that the odds of reporting a fall in the past month was 3.4 times (p < .001) greater for participants who self‐reported having a balance problem compared to those who did not. In contrast, fear of falling and perceived memory problems were not uniquely associated with falls. Using a mobility device, reporting pain, poor self‐rated health status, depression and anxiety scores were also associated with falling. Conclusion and ImplicationsOlder adults' perceived balance problem is strongly associated with their fall risk. Perceived balance may be important to discuss with older adults to increase identification of fall risk. Older adults' perceived balance should be included in nursing fall risk assessments and fall prevention interventions. A focus on balance may increase older adults' engagement in fall prevention. 
    more » « less
  4. Abstract Creativity is increasingly recognized as a core competency for the 21st century, making its development a priority in education, research, and industry. To effectively cultivate creativity, researchers and educators need reliable and accessible assessment tools. Recent software developments have significantly enhanced the administration and scoring of creativity measures; however, existing software often requires expertise in experiment design and computer programming, limiting its accessibility to many educators and researchers. In the current work, we introduce CAP—the Creativity Assessment Platform—a free web application for building creativity assessments, collecting data, and automatically scoring responses (cap.ist.psu.edu). CAP allows users to create custom creativity assessments in ten languages using a simple, point-and-click interface, selecting from tasks such as the Short Story Task, Drawing Task, and Scientific Creative Thinking Test. Users can automatically score task responses using machine learning models trained to match human creativity ratings—with multilingual capabilities, including the new Cross-Lingual Alternate Uses Scoring (CLAUS), a large language model achieving strong prediction of human creativity ratings in ten languages. CAP also provides a centralized dashboard to monitor data collection, score assessments, and automatically generate text for a Methods section based on the study’s tasks, metrics, and instructions—with a single click—promoting transparency and reproducibility in creativity assessment. Designed for ease of use, CAP aims to democratize creativity measurement for researchers, educators, and everyone in between. 
    more » « less
  5. Abstract PurposeTo introduce a novel deep model‐based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k‐space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. MethodsSPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high‐quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA‐based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self‐supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. ResultsWe validate SPICER on both open‐access datasets and experimentally collected data, showing that it can achieve state‐of‐the‐art performance in highly accelerated data acquisition settings (up to ). Our results also highlight the importance of different modules of SPICER—including the DMBA, the CSM estimation, and the SPICER training loss—on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre‐estimation methods especially when the ACS data is limited. ConclusionDespite being trained on noisy undersampled data, SPICER can reconstruct high‐quality images and CSMs in highly undersampled settings, which outperforms other self‐supervised learning methods and matches the performance of the well‐known E2E‐VarNet trained on fully sampled ground‐truth data. 
    more » « less