skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria
ABSTRACT The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria . We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems. IMPORTANCE Harmful algal blooms (HABs), caused by cyanobacteria like Microcystis aeruginosa , are a global threat to water quality and use across the planet. Researchers have agreed that nutrient loading is a major contributor to HAB persistence. While we may understand the environmental conditions that cause HABs, we still struggle in identifying the mechanisms that explain why these organisms have a competitive edge against other, less ecologically hazardous organisms. Our interdisciplinary approach in microbiology, mathematical population modeling, and genomics allows us to use nearly 70 years of research in restriction modification systems to show that HAB-forming cyanobacteria are exceptional in their ability to defend against viruses, and this capacity is intimately tied to nutrient loading. Our hypothesis suggests that defense against viral predation is a fundamental pillar of cyanobacterial ecological strategy and an important contributor to HAB dynamics.  more » « less
Award ID(s):
1840715
PAR ID:
10275084
Author(s) / Creator(s):
; ; ;
Editor(s):
Moran, Mary Ann
Date Published:
Journal Name:
mBio
Volume:
12
Issue:
3
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humbert, Jean-François (Ed.)
    Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis . 
    more » « less
  2. Eutrophication of inland waters is expected to increase the frequency and severity of harmful algal blooms (HABs). Toxin-production associated with HABs has negative effects on human health and aquatic ecosystem functioning. Despite evidence that flagellates can ingest toxin-producing cyanobacteria, interactions between members of the microbial loop are underestimated in our understanding of the food web and algal bloom dynamics. Physical and allelopathic interactions between a mixotrophic flagellate (Cryptomonas sp.) and two strains of a cyanobacteria (Microcystis aeruginosa) were investigated in a full-factorial experiment in culture. The maximum population growth rate of the mixotroph (0.25 day−1) occurred during incubation with filtrate from toxic M. aeruginosa. Cryptomonas was able to ingest toxic and non-toxic M. aeruginosa at maximal rates of 0.5 and 0.3 cells day−1, respectively. The results establish that although Cryptomonas does not derive benefits from co-incubation with M. aeruginosa, it may obtain nutritional supplement from filtrate. We also provide evidence of a reduction in cyanotoxin concentration (microcystin-LR) when toxic M. aeruginosa is incubated with the mixotroph. Our work has implications for “trophic upgrading” within the microbial food web, where cyanobacterivory by nanoflagellates may improve food quality for higher trophic levels and detoxify secondary compounds. 
    more » « less
  3. Harmful algal blooms (HABs) in lakes and estuaries, caused by cyanobacteria, pose various threats to humans and the environment. Cyanobacteria produce microcystins (MCs) that make animals and people sick. Once airborne, cyanobacterial aerosols are rapidly transformed through heterogeneous reactions with atmospheric oxidants, which tend to occur much faster in air than in water. The important aspects of these transformations include the degradation of MCs and the production of reactive oxygen species (ROS) from oxidized organic matter (OM) in cyanobacterial aerosol. In this study, MCs in aerosols and water samples, collected in lakes (Lake Okeechobee, Georges Lake, and Doctors Lake) of Florida during HABs, were measured using enzyme-linked immunosorbent assay kits. Organic hydroperoxides (OHP) and the oxidative potential (OP) associated with aerosols collected at Doctors Lake were measured with 4-nitrophenylboronic acid and dithiothreitol assays, respectively. The decay of MCs and the evolution of ROS in cyanobacterial aerosols were also demonstrated in an outdoor chamber under ambient sunlight. MC concentrations (0.4–2.1 μg/L) during HAB periods were higher than the US EPA guideline (0.3 μg/L for pre-school age and 1.6 μg/L for school-age and above). Airborne MC concentrations ranged from 0.2 to 5.7 ng/m3. Regulations for airborne MC concentrations are yet to be established. In both field and chamber data, MCs decomposed but ROS substantially increased as aerosols atmospherically oxidized. Aerosolized OM concentrations during HABs were higher than those in dormant periods. OM in cyanobacterial aerosols was enriched at estuary Doctors Lake with high inorganic salt concentrations due to salting-out of water-soluble organics into lake-surface layers. Aerosolized OM concentrations were positively corelated to OP and OHP (r = 0.96 and 0.85, respectively) at Doctors Lake suggesting that cyanobacterial aerosols might adversely influence respiratory health. The longitudinal health impacts of aerosolized cyanobacteria emitted from HABs should be investigated in the future. 
    more » « less
  4. Glass, Jennifer B. (Ed.)
    ABSTRACT Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H 2 O 2 . Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis , which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide. 
    more » « less
  5. Freshwater with high quality is crucial for both public health and aquatic biodiversity. However, freshwater resources face numerous challenges, including the proliferation of harmful algal blooms (HABs) caused by various cyanobacterial species that are generally triggered by human activities like agricultural runoff and wastewater. Native algicidal microbiomes may offer potential solutions, although challenges remain in utilizing microbial resources to mitigate HABs in freshwater environments. The combination of synthetic microbial community and probiotic development approaches with robust machine learning tools could allow us to harness native microbiomes to address water quality issues caused by HABs in large water bodies. A meta-analysis of around 100 research studies regarding algicidal bacteria-algae interactions was conducted to quantitatively assess the potential of taxonomically diverse microbial species in controlling HABs in freshwater ecosystems. Meta-analysis findings revealed that diverse species from common freshwater bacterial phyla such as Actinobacteria, Bacteroidota, Firmicutes, and Proteobacteria exhibited 50100 % algicidal activity against different algal species depending on interacting species and environmental conditions. Algicidal taxa (mainly against Microcystis aeruginosa) from both Actinobacteria and Firmicutes primarily included Actinomycetes and Bacillus species. However, Bacteroidota and alpha/beta Proteobacteria exhibited algicidal activity against a broader range of algal species, thus highlighting their potential for controlling multi-species HABs in freshwater environments. Based on this quantitative analysis, the current review puts forward synthetic microbial communities and machine-learning based frameworks to develop microbial solutions for protecting freshwater resources from HABs invasions. 
    more » « less