skip to main content

Title: Coarse-grained force-field for large scale molecular dynamics simulations of polyacrylamide and polyacrylamide-gels based on quantum mechanics
We developed a new coarse-grained (CG) molecular dynamics force field for polyacrylamide (PAM) polymer based on fitting to the quantum mechanics (QM) equation of state (EOS). In this method, all nonbond interactions between representative beads are parameterized using a series of QM-EOS, which significantly improves the accuracy in comparison to common CG methods derived from atomistic molecular dynamics. This CG force-field has both higher accuracy and improved computational efficiency with respect to the OPLS atomistic force field. The nonbond components of the EOS were obtained from cold-compression curves on PAM crystals with rigid chains, while the covalent terms that contribute to the EOS were obtained using relaxed chains. For describing PAM gels we developed water–PAM interaction parameters using the same method. We demonstrate that the new CG-PAM force field reproduces the EOS of PAM crystals, isolated PAM chains, and water–PAM systems, while successfully predicting such experimental quantities as density, specific heat capacity, thermal conductivity and melting point.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Physical Chemistry Chemical Physics
Page Range or eLocation-ID:
10909 to 10918
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe a strategy of integrating quantum mechanical (QM), hybrid quantum mechanical/molecular mechanical (QM/MM) and MM simulations to analyze the physical properties of a solid/water interface. This protocol involves using a correlated ab initio (CCSD(T)) method to first calibrate Density Functional Theory (DFT) as the QM approach, which is then used in QM/MM simulations to compute relevant free energy quantities at the solid/water interface using a mean-field approximation of Yang et al. that decouples QM and MM thermal fluctuations; gas-phase QM/MM and periodic DFT calculations are used to determine the proper QM size in the QM/MM simulations. Finally, the QM/MM free energy results are compared with those obtained from MM simulations to directly calibrate the force field model for the solid/water interface. This protocol is illustrated by examining the orientations of an alkyl amine ligand at the gold/water interface, since the ligand conformation is expected to impact the chemical properties ( e.g. , charge) of the solid surface. DFT/MM and MM simulations using the INTERFACE force field lead to consistent results, suggesting that the effective gold/ligand interactions can be adequately described by a van der Waals model, while electrostatic and induction effects are largely quenched by solvation. The observed differencesmore »among periodic DFT, QM/MM and MM simulations, nevertheless, suggest that explicitly including electronic polarization and potentially charge transfer in the MM model can be important to the quantitative accuracy. The strategy of integrating multiple computational methods to cross-validate each other for complex interfaces is applicable to many problems that involve both inorganic/metallic and organic/biomolecular components, such as functionalized nanoparticles.« less
  2. This work investigates the accuracy, efficiency, and applicability of coarse-grained (CG) atomistic methods in simulation of phonon dynamics. First, we compute and compare phonon dispersion relations in CG models with those in atomically resolved models, using the concurrent atomistic-continuum (CAC). The CG atomistic models using the CAC method are shown to reproduce long-wavelength phonons with great accuracy, while capturing the dynamics of some short-wavelength phonons that are usually inaccessible to CG methods. We then present CG simulation results of the propagation of heat pulses in Si with the interaction between atoms being modelled with the Stillinger-Weber potential; the experimentally observed phonon-focusing patterns in the (1 0 0) and (1 1 1) planes of Si crystals are reproduced. The accuracy and efficiency of the CAC method in CG simulation of acoustic and optical phonon branches are quantified with respect to atomically-resolved molecular dynamics simulations. The applicability and limitations of concurrent multiscale methods in the simulation of phonon transport across atomistic-continuum interface are investigated. Possible ways to overcome the limitations are discussed.
  3. Coarse-grained (CG) models have been successful in simulating the chemical properties of lipid bilayers, but accurate treatment of membrane proteins and lipid-protein molecular interactions remains a challenge. The CgProt force field, original developed with the multiscale coarse graining method, is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. Reassignment of select CG sidechain sites from the apolar to polar site type was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlates with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These experimental values serve as important anchor points in choosing between alternate CG models based on their observed permeation profiles, particularly for Arg, Lys and Gln residues where the all-atom OPLS solvation energy does not agree well with experiment. Available partitioning data was also used to reparameterize the representation of the peptide backbone, which needed to be made less attractive for the bilayer hydrophobic core region. The newly developed force field,more »CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in studies of lipid-protein interactions and the conformational properties of diverse membrane protein systems.« less
  4. Molecular dynamics at the atomistic scale is increasingly being used to predict material properties and speed up the materials design and development process. However, the accuracy of molecular dynamics predictions is sensitively dependent on the force fields. In the traditional force field calibration process, a specific property, predicted by the model, is compared with the experimental observation and the force field parameters are adjusted to minimize the difference. This leads to the issue that the calibrated force fields are not generic and robust enough to predict different properties. Here, a new calibration method based on multi-objective Bayesian optimization is developed to speed up the development of molecular dynamics force fields that are capable of predicting multiple properties accurately. This is achieved by reducing the number of simulation runs to generate the Pareto front with an efficient sequential sampling strategy. The methodology is demonstrated by generating a new coarse-grained force field for polycaprolactone, where the force field can predict mechanical properties and water diffusion in the polymer.
  5. Abstract

    Double-network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft-wet materials. Current knowledge of DN gels from synthesis methods to toughening mechanisms almost exclusively comes from chemically-linked DN hydrogels by experiments. Molecular modeling and simulations of inhomogeneous DN structure in hydrogels have proved to be extremely challenging. Herein, we developed a new multiscale simulation platform to computationally investigate the early fracture of physically-chemically linked agar/polyacrylamide (agar/PAM) DN hydrogels at a long timescale. A “random walk reactive polymerization” (RWRP) was developed to mimic a radical polymerization process, which enables to construct a physically-chemically linked agar/PAM DN hydrogel from monomers, while conventional and steered MD simulations were conducted to examine the structural-dependent energy dissipation and fracture behaviors at the relax and deformation states. Collective simulation results revealed that energy dissipation of agar/PAM hydrogels was attributed to a combination of the pulling out of agar chains from the DNs, the disruption of massive hydrogen bonds between and within DN structures, and the strong association of water molecules with both networks, thus explaining a different mechanical enhancement of agar/PAM hydrogels. This computational work provided atomic details of network structure, dynamics, solvation, and interactions of amore »hybrid DN hydrogel, and a different structural-dependent energy dissipation mode and fracture behavior of a hybrid DN hydrogel, which help to design tough hydrogels with new network structures and efficient energy dissipation modes. Additionally, the RWRP algorithm can be generally applied to construct the radical polymerization-produced hydrogels, elastomers, and polymers.

    « less