skip to main content

Title: Analysis of the conformational properties of amine ligands at the gold/water interface with QM, MM and QM/MM simulations
We describe a strategy of integrating quantum mechanical (QM), hybrid quantum mechanical/molecular mechanical (QM/MM) and MM simulations to analyze the physical properties of a solid/water interface. This protocol involves using a correlated ab initio (CCSD(T)) method to first calibrate Density Functional Theory (DFT) as the QM approach, which is then used in QM/MM simulations to compute relevant free energy quantities at the solid/water interface using a mean-field approximation of Yang et al. that decouples QM and MM thermal fluctuations; gas-phase QM/MM and periodic DFT calculations are used to determine the proper QM size in the QM/MM simulations. Finally, the QM/MM free energy results are compared with those obtained from MM simulations to directly calibrate the force field model for the solid/water interface. This protocol is illustrated by examining the orientations of an alkyl amine ligand at the gold/water interface, since the ligand conformation is expected to impact the chemical properties ( e.g. , charge) of the solid surface. DFT/MM and MM simulations using the INTERFACE force field lead to consistent results, suggesting that the effective gold/ligand interactions can be adequately described by a van der Waals model, while electrostatic and induction effects are largely quenched by solvation. The observed differences more » among periodic DFT, QM/MM and MM simulations, nevertheless, suggest that explicitly including electronic polarization and potentially charge transfer in the MM model can be important to the quantitative accuracy. The strategy of integrating multiple computational methods to cross-validate each other for complex interfaces is applicable to many problems that involve both inorganic/metallic and organic/biomolecular components, such as functionalized nanoparticles. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1503408
Publication Date:
NSF-PAR ID:
10060329
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
5
Page Range or eLocation-ID:
3349 to 3362
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. Methods which accurately predict protein – ligand binding strengths are critical for drug discovery. In the last two decades, advances in chemical modelling have enabled steadily accelerating progress in the discovery and optimization of structure-based drug design. Most computational methods currently used in this context are based on molecular mechanics force fields that often have deficiencies in describing the quantum mechanical (QM) aspects of molecular binding. In this study, we show the competitiveness of our QM-based Molecules-in-Molecules (MIM) fragmentation method for characterizing binding energy trends for seven different datasets of protein – ligand complexes. By using molecular fragmentation, the MIM method allows for accelerated QM calculations. We demonstrate that for classes of structurally similar ligands bound to a common receptor, MIM provides excellent correlation to experiment, surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. The MIM method offers a relatively simple, well-defined protocol by which binding trends can be ascertained at the QM level and is suggested as a promising option for lead optimization in structure-based drug design.
  2. Abstract
    <p>This dataset consists of 800 coordinate files (in the CHARMM psf/cor format) for the QM/MM minimum energy pathways of the acylation reactions between a Class A beta-lactamases (Toho-1) and two beta-lactam antibiotic molecules (ampicillin and cefalexin).</p> <p>These files are:</p> <ul><li>toho_amp.r1-ae.zip: The R1-AE acylation pathways for Toho-1/Ampicillin (200 pathways);</li><li>toho_amp.r2-ae.zip: The R2-AE acylation pathways for Toho-1/Ampicillin (200 pathways);</li><li>toho_cex.r1-ae.zip: The R1-AE acylation pathways for Toho-1/Cefalexin (200 pathways);</li><li>toho_cex.r2-ae.zip: The R2-AE acylation pathways for Toho-1/Cefalexin (200 pathways);</li><li>energies.zip: the replica energies at B3LYP-D3/6-31&#43;G**/C36 level;</li><li>chelpgs.zip: the ChElPG charges of all reactant replicas at B3LYP-D3/6-31&#43;G**/C36 level;</li><li>farrys.zip: the featurzied NumPy arrays for model training;</li><li>peephole.zip: an example file for how the optimized MEPs look like; </li><li>dftb3_benchmark.zip: the reference calculations to justify the use of DFTB3/3OB-F/C36 in MEP optimizations, the reference level of theory is B3LYP-D3/6-31G**/C36. </li></ul> <p>The R1-AE pathways are the acylation uses Glu166 as the general base; the R2-AE pathways uses Lys73 and Glu166 as the concerted base. </p> <p>All QM/MM pathways are optimized at the DFTB3/3OB-f/CHARMM36 level of theory. </p> <p>Z. Song et al Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways. ACS Physical Chemistry Au, in press. DOI: 10.1021/acsphyschemau.2c00005</p>
  3. Abstract
    <p>This data set for the manuscript entitled &#34;Design of Peptides that Fold and Self-Assemble on Graphite&#34; includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled to 10 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included.</p> <p>Version: 2.0</p> <p>Changes versus version 1.0 are the addition of the free energy of folding, adsorption, and pairing calculations (Sim_Figure-7) and shifting of the figure numbers to accommodate this addition.</p> <p><br /> Conventions Used in These Files<br /> &#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;</p> <p>Structure Files<br /> ----------------<br /> - graph_*.psf or sol_*.psf (original NAMD (XPLOR?) format psf file including atom details (type, charge, mass),More>>
  4. Molybdenum disulfide (MoS 2 ) is a layered material with outstanding electrical and optical properties. Numerous studies evaluate the performance in sensors, catalysts, batteries, and composites that can benefit from guidance by simulations in all-atom resolution. However, molecular simulations remain difficult due to lack of reliable models. We introduce an interpretable force field for MoS 2 with record performance that reproduces structural, interfacial, and mechanical properties in 0.1% to 5% agreement with experiments. The model overcomes structural instability, deviations in interfacial and mechanical properties by several 100%, and empirical fitting protocols in earlier models. It is compatible with several force fields for molecular dynamics simulation, including the interface force field (IFF), CVFF, DREIDING, PCFF, COMPASS, CHARMM, AMBER, and OPLS-AA. The parameters capture polar covalent bonding, X-ray structure, cleavage energy, infrared spectra, bending stability, bulk modulus, Young's modulus, and contact angles with polar and nonpolar solvents. We utilized the models to uncover the binding mechanism of peptides to the MoS 2 basal plane. The binding strength of several 7mer and 8mer peptides scales linearly with surface contact and replacement of surface-bound water molecules, and is tunable in a wide range from −86 to −6 kcal mol −1 . The binding selectivitymore »is multifactorial, including major contributions by van-der-Waals coordination and charge matching of certain side groups, orientation of hydrophilic side chains towards water, and conformation flexibility. We explain the relative attraction and role of the 20 amino acids using computational and experimental data. The force field can be used to screen and interpret the assembly of MoS 2 -based nanomaterials and electrolyte interfaces up to a billion atoms with high accuracy, including multiscale simulations from the quantum scale to the microscale.« less
  5. Computational simulations of ionic liquid solutions have become a useful tool to investigate various physical, chemical and catalytic properties of systems involving these solvents. Classical molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations of IL systems have provided significant insights at the atomic level. Here, we present a review of the development and application of the multipolar and polarizable force field AMOEBA for ionic liquid systems, termed AMOEBA–IL. The parametrization approach for AMOEBA–IL relies on the reproduction of total quantum mechanical (QM) intermolecular interaction energies and QM energy decomposition analysis. This approach has been used to develop parameters for imidazolium– and pyrrolidinium–based ILs coupled with various inorganic anions. AMOEBA–IL has been used to investigate and predict the properties of a variety of systems including neat ILs and IL mixtures, water exchange reactions on lanthanide ions in IL mixtures, IL–based liquid–liquid extraction, and effects of ILs on an aniline protection reaction.