skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of the conformational properties of amine ligands at the gold/water interface with QM, MM and QM/MM simulations
We describe a strategy of integrating quantum mechanical (QM), hybrid quantum mechanical/molecular mechanical (QM/MM) and MM simulations to analyze the physical properties of a solid/water interface. This protocol involves using a correlated ab initio (CCSD(T)) method to first calibrate Density Functional Theory (DFT) as the QM approach, which is then used in QM/MM simulations to compute relevant free energy quantities at the solid/water interface using a mean-field approximation of Yang et al. that decouples QM and MM thermal fluctuations; gas-phase QM/MM and periodic DFT calculations are used to determine the proper QM size in the QM/MM simulations. Finally, the QM/MM free energy results are compared with those obtained from MM simulations to directly calibrate the force field model for the solid/water interface. This protocol is illustrated by examining the orientations of an alkyl amine ligand at the gold/water interface, since the ligand conformation is expected to impact the chemical properties ( e.g. , charge) of the solid surface. DFT/MM and MM simulations using the INTERFACE force field lead to consistent results, suggesting that the effective gold/ligand interactions can be adequately described by a van der Waals model, while electrostatic and induction effects are largely quenched by solvation. The observed differences among periodic DFT, QM/MM and MM simulations, nevertheless, suggest that explicitly including electronic polarization and potentially charge transfer in the MM model can be important to the quantitative accuracy. The strategy of integrating multiple computational methods to cross-validate each other for complex interfaces is applicable to many problems that involve both inorganic/metallic and organic/biomolecular components, such as functionalized nanoparticles.  more » « less
Award ID(s):
1503408
PAR ID:
10060329
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
5
ISSN:
1463-9076
Page Range / eLocation ID:
3349 to 3362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present software infrastructure for the design and testing of new quantum mechanical/molecular mechanical and machine-learning potential (QM/MM−ΔMLP) force fields for a wide range of applications. The software integrates Amber’s molecular dynamics simulation capabilities with fast, approximate quantum models in the xtb package and machine-learning potential corrections in DeePMD-kit. The xtb package implements the recently developed density-functional tight-binding QM models with multipolar electrostatics and density-dependent dispersion (GFN2-xTB), and the interface with Amber enables their use in periodic boundary QM/MM simulations with linear-scaling QM/MM particle-mesh Ewald electrostatics. The accuracy of the semiempirical models is enhanced by including machine-learning correction potentials (ΔMLPs) enabled through an interface with the DeePMD-kit software. The goal of this paper is to present and validate the implementation of this software infrastructure in molecular dynamics and free energy simulations. The utility of the new infrastructure is demonstrated in proof-of-concept example applications. The software elements presented here are open source and freely available. Their interface provides a powerful enabling technology for the design of new QM/MM−ΔMLP models for studying a wide range of problems, including biomolecular reactivity and protein–ligand binding. 
    more » « less
  2. We present a reformulation of QM/MM as a fully quantum mechanical theory of interacting subsystems, all treated at the level of density functional theory (DFT). For the MM subsystem, which lacks orbitals, we assign an ad hoc electron density and apply orbital-free DFT functionals to describe its quantum properties. The interaction between the QM and MMsubsystems is also treated using orbital-free density functionals, accounting for Coulomb interactions, exchange, correlation, and Pauli repulsion. Consistency across QM and MM subsystems is ensured by employing data-driven, many-body MM force fields that faithfully represent DFT functionals. Applications to water-solvated systems demonstrate that this approach achieves unprecedented, very rapid convergence to chemical accuracy as the size of the QM subsystem increases. We validate the method with several pilot studies, including water bulk, water clusters (prism hexamer and pentamers), solvated glucose, a palladium aqua ion, and a wet monolayer of MoS2. 
    more » « less
  3. PyDFT-QMMM is a Python-based package for performing hybrid quantum mechanics/molecular mechanics (QM/MM) simulations at the density functional level of theory. The program is designed to treat short-range and long-range interactions through user-specified combinations of electrostatic and mechanical embedding procedures within periodic simulation domains, providing necessary interfaces to external quantum chemistry and molecular dynamics software. To enable direct embedding of long-range electrostatics in periodic systems, we have derived and implemented force terms for our previously described QM/MM/PME approach [Pederson and McDaniel, J. Chem. Phys. 156, 174105 (2022)]. Communication with external software packages Psi4 and OpenMM is facilitated through Python application programming interfaces (APIs). The core library contains basic utilities for running QM/MM molecular dynamics simulations, and plug-in entry-points are provided for users to implement custom energy/force calculation and integration routines, within an extensible architecture. The user interacts with PyDFT-QMMM primarily through its Python API, allowing for complex workflow development with Python scripting, for example, interfacing with PLUMED for free energy simulations. We provide benchmarks of forces and energy conservation for the QM/MM/PME and alternative QM/MM electrostatic embedding approaches. We further demonstrate a simple example use case for water solute in a water solvent system, for which radial distribution functions are computed from 100 ps QM/MM simulations; in this example, we highlight how the solvation structure is sensitive to different basis-set choices due to under- or over-polarization of the QM water molecule’s electron density. 
    more » « less
  4. Methods which accurately predict protein – ligand binding strengths are critical for drug discovery. In the last two decades, advances in chemical modelling have enabled steadily accelerating progress in the discovery and optimization of structure-based drug design. Most computational methods currently used in this context are based on molecular mechanics force fields that often have deficiencies in describing the quantum mechanical (QM) aspects of molecular binding. In this study, we show the competitiveness of our QM-based Molecules-in-Molecules (MIM) fragmentation method for characterizing binding energy trends for seven different datasets of protein – ligand complexes. By using molecular fragmentation, the MIM method allows for accelerated QM calculations. We demonstrate that for classes of structurally similar ligands bound to a common receptor, MIM provides excellent correlation to experiment, surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. The MIM method offers a relatively simple, well-defined protocol by which binding trends can be ascertained at the QM level and is suggested as a promising option for lead optimization in structure-based drug design. 
    more » « less
  5. Flavoproteins are a ubiquitous class of redox proteins, enzymes, and photoreceptors that derive their versatility from the flavin cofactor—a prosthetic group that serves as the main locus of their spectral, photophysical, and (photo)chemical properties. It is thus common for computational modeling of flavoproteins to employ a hybrid approach that treats the flavin quantum mechanically and the remaining atoms classically. Such quantum mechanical/molecular mechanical (QM/MM) methods have proven powerful for studying flavoproteins so far, but users are often faced with a choice between treating the flavin electronic structure with ab initio wave function methods or using more approximate methods that allow for more extensive sampling of the protein dynamics. Herein, we present APEC-F 2.0, an automated QM/MM workflow that uses several open-source software packages to construct QM/MM models of flavoproteins. Exploiting the rigidity of flavin’s tricyclic isoalloxazine ring, the APEC approach iteratively optimizes flavin’s geometry in a static MM environment that represents a dynamic protein using a superposition of configurations generated from molecular dynamics. The automation of the code enables the systematic construction of QM/MM models using a common protocol and is suitable for comparing flavin’s spectral, electronic, and chemical properties in different redox, protonation, or excited states in a wide range of flavoproteins. 
    more » « less