Controlling the 3-D morphology of nanocatalysts is one of the underexplored but important approaches for improving the sluggish kinetics of the oxygen evolution reaction (OER) in water electrolysis. This work reports a scalable, oil-based method based on thermal decomposition of organometallic complexes to yield highly uniform Ni–Fe-based nanocatalysts with a well-defined morphology ( i.e. Ni–Fe core–shell, Ni/Fe alloy, and Fe–Ni core–shell). Transmission electron microscopy reveals their morphology and composition to be NiO x –FeO x /NiO x core-mixed shell, NiO x /FeO x alloy, and FeO x –NiO x core–shell. X-ray techniques resolve the electronic structures of the bulk and are supported by electron energy loss spectroscopy analysis of individual nanoparticles. These results suggest that the crystal structure of Ni is most likely to contain α-Ni(OH) 2 and that the chemical environment of Fe is variable, depending on the morphology of the nanoparticle. The Ni diffusion from the amorphous Ni-based core to the iron oxide shell makes the NiO x –NiO x /FeO x core-mixed shell structure the most active and the most stable nanocatalyst, which outperforms the comparison NiO x /FeO x alloy nanoparticles expected to be active for the OER. This study suggests that the chemical environment of the mixed NiO x /FeO x alloy composition is important to achieve high electrocatalytic activity for the OER and that the 3-D morphology plays a key role in the optimization of the electrocatalytic activity and stability of the nanocatalyst for the OER.
more »
« less
Predicted Optimal Bifunctional Electrocatalysts for the Hydrogen Evolution Reaction and the Oxygen Evolution Reaction Using Chalcogenide Heterostructures Based on Machine Learning Analysis of in Silico Quantum Mechanics Based High Throughput Screening
- Award ID(s):
- 1805022
- PAR ID:
- 10275132
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 869 to 876
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Earth-abundant manganese-based oxides have emerged as promising alternatives to noble-metal-based catalysts for the oxygen evolution reaction (OER) in acidic conditions; however, their inferior activity and stability present critical challenges for the sustainable production of hydrogen via water electrolysis. Moving beyond oxides, heteroanionic materials, which incorporate anions with lower electronegativity than oxygen, have shown potential for improving the OER performance, but a detailed understanding of the underlying mechanisms is lacking. Here, we investigate manganese based oxychlorides (Mn8O10Cl3 and FeMn7O10Cl3) that exhibit excellent activity and stability for acidic OER to elucidate material property dynamics and correlate them with OER behaviors. Our rigorous electrochemical stability testing reveals that the high operating potential mitigates Mn dissolution over prolonged exposure to the OER conditions. Through a combination of ex situ and in situ surface and bulk-sensitive X-ray spectroscopy analyses, we observe a trade-off between increasing Mn valence and maintaining structural integrity, which results in dynamic bond length changes within the [MnCl6] octahedra during the activation and degradation processes of these oxychloride catalysts. This study provides insights into the fundamental relationships between the chemical, electronic, and geometric properties of the catalysts and their electrocatalytic outcomes.more » « less
An official website of the United States government

