skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrocatalytic redox neutral [3 + 2] annulation of N -cyclopropylanilines and alkenes
Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N -cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N -cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.  more » « less
Award ID(s):
1915878
PAR ID:
10275251
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
3
ISSN:
2041-6520
Page Range / eLocation ID:
969 to 975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A combined experimental and theoretical study is presented on the collision-induced dissociation (CID) of 9-methylguanine–1-methylcytosine base-pair radical cation (abbreviated as [9MG·1MC]˙ + ) and its monohydrate ([9MG·1MC]˙ + ·H 2 O) with Xe and Ar gases. Product ion mass spectra were measured as a function of collision energy using guided-ion beam tandem mass spectrometry, from which cross sections and threshold energies for various dissociation pathways were determined. Electronic structure calculations were performed at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory to identify product structures and map out reaction potential energy surfaces. [9MG·1MC]˙ + has two structures: a conventional structure 9MG˙ + ·1MC (population 87%) consisting of hydrogen-bonded 9-methylguanine radical cation and neutral 1-methylcytosine, and a proton-transferred structure [9MG − H]˙·[1MC + H] + (less stable, population 13%) formed by intra-base-pair proton transfer from the N1 of 9MG˙ + to the N3 of 1MC within 9MG˙ + ·1MC. The two structures have similar dissociation energies but can be distinguished in that 9MG˙ + ·1MC dissociates into 9MG˙ + and 1MC whereas [9MG – H]˙·[1MC + H] + dissociates into neutral [9MG – H]˙ radical and protonated [1MC + H] + . An intriguing finding is that, in both Xe- and Ar-induced CID of [9MG·1MC]˙ + , product ions were overwhelmingly dominated by [1MC + H] + , which is contrary to product distributions predicted using a statistical reaction model. Monohydration of [9MG·1MC]˙ + reversed the populations of the conventional structure (43%) vs. the proton-transferred structure (57%) and induced new reactions upon collisional activation, of which intra-base-pair hydrogen transfer produced [9MG + H] + and the reaction of the water ligand with a methyl group in [9MG·1MC]˙ + led to methanol elimination from [9MG·1MC]˙ + ·H 2 O. 
    more » « less
  2. null (Ed.)
    Alkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through the intermediacy of alkylmetal species susceptible to deleterious pathways including β-hydride elimination and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl N -(acyloxy)phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered nucleophiles is reported. This redox-neutral, multicomponent reaction is postulated to proceed through photochemical radical/polar crossover to afford a key carbocation species that undergoes subsequent trapping with organoboron nucleophiles to accomplish the carboallylation, carboalkenylation, carboalkynylation, and carboarylation of alkenes with regio- and chemoselective control. The mechanistic intricacies of this difunctionalization were elucidated through Stern–Volmer quenching studies, photochemical quantum yield measurements, and trapping experiments of radical and ionic intermediates. 
    more » « less
  3. Abstract We report an electrochemical method for coupling biomass‐derived C5/C6 compounds to value‐added fuel precursors. Using only 2 % of equivalent charges, 2‐methylfuran (2‐MF) was oxidized to yield a cation radical, which readily reacted with 3‐hexene‐2,5‐dione, a derivate of 2,5‐dimethylfuran, to produce 3‐(5‐methylfuran‐2‐yl)hexane‐2,5‐dione. The product was converted to 4‐ethylnonane (a component of biodiesel/jet fuel) in a single step in excellent yield. Importantly, the reaction was not sensitive to oxygen, and a trace amount of water was found to promote the reaction. Detailed mechanistic studies confirmed the proposed reaction pathways. Key to the mechanism is the radical generation that is enabled by electrochemistry. The radical is regenerated at the end of a reaction cycle to ensure chain propagation for an average of ca. 47 times, resulting in an apparent Faradaic efficiency of 4700 %. 
    more » « less
  4. Radical cation initiated cyclization reactions can be triggered by the one electron oxidation of an electron-rich olefin using either electrochemistry or visible light and a photoredox catalyst. In principle, the two methods can be used to give complimentary products with the electrolysis leading to products derived from a net two electron oxidation and the photoelectron transfer method being compatible with the formation of products from a redox neutral process. However, we are finding an increasing number of oxidative cyclization reactions that require the rapid removal of a second electron in order to form high yields of the desired product. In those cases, the electrochemical method can provide a superior approach to accessing the necessary two electron oxidation pathway. With that said, it is a combination of the two methods that provides the mechanistic insight needed to understand when a reaction has this requirement, and we are finding that the use of photoredox catalysis in combination with electrochemical methods is changing our understanding of even the most successful anodic cyclization reactions run to date. 
    more » « less
  5. Abstract Identifying the short-lived intermediates and reaction mechanisms of multi-channel radical cation fragmentation processes remains a current and important challenge to understanding and predicting mass spectra. We find that coherent oscillations in the femtosecond time-dependent yields of several product ions following ultrafast strong-field ionization represent spectroscopic signatures that elucidate their mechanism of formation and identify the intermediate(s) they originate from. Experiments on endo-dicyclopentadiene show that vibrational frequencies from various intermediates are mapped onto their resulting products. Aided by ab initio methods, we identify the vibrational modes of both the cleaved and intact molecular ion intermediates. These results confirm stepwise and concerted fragmentation pathways of the dicyclopentadiene ion. This study highlights the power of tracking the femtosecond dynamics of all product ions simultaneously and sheds further light onto one of the fundamental reaction mechanisms in mass spectrometry, the retro-Diels Alder reaction. 
    more » « less