skip to main content


Title: Experts’ and Novices’ Perspectives on the Priority of the Head, Heart, and Hand in Civil Engineering: A Mixed Methods Study
Although some have called for engineering curricula that fully integrates learning in the head (cognitive), hand (skill), andheart (affective) domains, others acknowledge the difficulty of overhauling existing curriculum to adequately prioritize the‘‘heart’’. The opinions of experts are often consulted to inform curricular changes, but this is rarely compared to theopinions of novices. There is a need for a better understanding of both experts’ and novices’ perspectives on the role of the‘‘heart’’ in engineering education and in engineering work. With an emphasis on civil engineering, this study uses aconvergent parallel mixed methods research design and Shulman’s Three Apprenticeships framework to investigateexpert and novice perspectives on the priority of affective constructs in undergraduate education and their approach todesigning facilities for users with needs different from their own. Data was collected from civil engineering experts andnovices at an annual regional civil engineering-focused conference. Results suggest experts and novices may have differentperspectives on which values should be emphasized earlier versus later in civil engineering education. Implications of theresults from this study suggest that while many values should be emphasized in engineering education, it might beimportant for educators to emphasize certain values (e.g., compassion) earlier rather than later to assist in thedevelopment of a well-rounded engineer.  more » « less
Award ID(s):
1735878
NSF-PAR ID:
10275311
Author(s) / Creator(s):
Date Published:
Journal Name:
IJEE International Journal of Engineering Education
Volume:
36
Issue:
5
ISSN:
2540-9808
Page Range / eLocation ID:
640–1651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although some have called for engineering curricula that fully integrates learning in the head (cognitive), hand (skill), and heart (affective) domains, others acknowledge the difficulty of overhauling existing curriculum to adequately prioritize the ''heart''. The opinions of experts are often consulted to inform curricular changes, but this is rarely compared to the opinions of novices. There is a need for a better understanding of both experts' and novices' perspectives on the role of the ''heart'' in engineering education and in engineering work. With an emphasis on civil engineering, this study uses a convergent parallel mixed methods research design and Shulman's Three Apprenticeships framework to investigate expert and novice perspectives on the priority of affective constructs in undergraduate education and their approach to designing facilities for users with needs different from their own. Data was collected from civil engineering experts and novices at an annual regional civil engineering-focused conference. Results suggest experts and novices may have different perspectives on which values should be emphasized earlier versus later in civil engineering education. Implications of the results from this study suggest that while many values should be emphasized in engineering education, it might be important for educators to emphasize certain values (e.g., compassion) earlier rather than later to assist in the development of a well-rounded engineer. 
    more » « less
  2. Engineering undergraduates are exposed to a variety of writing curricula, such as first-year-composition courses, in their early program of study; however, they have difficulties meeting the expectations of writing in early engineering courses. On the other hand, instructors in entry-level engineering lab courses struggle to instruct lab report writing due to a wide range of student writing backgrounds and pressure to focus on technical content. When using the lens of learning transfer theories, which describe the processes and the effective extent to which past experiences affect learning and performance in a new situation, we can classify engineering students in three writing transfer modes: 1) concurrent transfer, which occurs when a rhetorically-focused technical writing class is taken concurrently or prior to engineering labs in the major; 2) vertical transfer, which occurs when a rhetorically-focused general education writing class is taken prior to engineering labs in the major; and 3) absent transfer, which occurs when no rhetorically-focused writing class exists (rather literature-focused) or writing-intensive courses are not required in the general education curriculum. This study aims to investigate how the engineering sophomore’s past writing experience, specifically in collegiate writing or writing-across-the-curriculum courses, affects their engineering lab report writing. Lab reports from four sophomore engineering courses (1 civil, 2 electrical, 1 general engineering) across three institutions collected for analysis consisted of two sets: the sample sets in early labs (for example, Lab 1) and in later labs (for example, the last lab) of the courses. A total of 46 reports (22 early and 24 later) were collected from 22 engineering sophomores during AY2019-2020. Four engineering faculty (1 civil, 1 electrical, and 2 mechanical engineering) developed a rubric based on lab report writing student outcomes, which are aligned with the existing outcomes such as ABET outcomes and the student outcomes from the Council of Writing Program Administrators (WPA). The data suggest that the greatest writing gains in a first lab course are made by vertical transfer students, while concurrent transfer students enter with skills developed in prior writing coursework. The largest improvements among the three transfer modes were found in the student outcomes related to lab data presentation, analysis, and interpretation. In these outcomes, the concurrent transfer students had relatively high scores for both early and later reports, while the vertical transfer students improved their scores from relatively low in early reports to meet expectations in later reports. Absent transfer students demonstrated inconsistent outcomes and deserve greater study with more data than was available for this study. 
    more » « less
  3. There is a growing interest in engineering education research on school-to-work transitions and early career engineers. Much of this work documents misalignments and gaps between engineering education and engineering practice. Contributing to that growing body of research, this paper presents findings on the advice that early career engineers would give to engineering instructors. The research question addressed in this paper is: What is the most important advice that recent graduates have for civil engineering instructors? Data came from interviews with civil engineers in the United States. Sixteen early career civil engineers were asked what advice they would give instructors in civil engineering programs. Open coding methods were used to identify and categorize themes in the responses. In contrast to the other interview questions, for which participants’ answers differed to a large degree, the uniformity with which participants answered the “advice” question was striking. Nearly all participants said that instructors should have a better understanding of real-world engineering work practices and/or experience working in industry. Their reasoning and explanations are elaborated upon in this analysis. Programs and suggestions on how this could be accomplished are discussed. 
    more » « less
  4. When examining factors affecting student academic success, it is important to consider how these factors interact with one another. Students’ affective attributes are complex in nature; thus, research methods and analyses should holistically examine how these attributes interact, not simply as a set of distinct constructs. Prior research into engineering students’ affective attributes, in which we used a validated survey to assess student motivation, identity, goal orientation, sense of belonging, career outcome expectations, grit and personality traits, demonstrated a positive correlation between perceptions of belongingness in engineering and time spent in the program. Other prior research has examined interactions between affective attributes, for example, engineering identity as a predictor of grit (consistency of interest). However, more work is needed to examine the complex relationships between sense of belonging, engineering identity, future career outcome expectations and motivation, particularly for students in an engineering program undergoing curricular change. This paper describes a confirmatory factor analysis and structural equation model to examine how engineering identity, career outcome expectations and time-oriented motivation (specifically, students’ future time perspectives, or FTP) impact their sense of belonging in engineering, with grit (consistency of interest) as a moderator of these relationships. To conduct these analyses, we used survey data collected over two years from sophomores, juniors, and seniors enrolled in an undergraduate civil engineering program (2017-18, n=358; 2018-19, n=556). Based on descriptive statistics and initial statistical comparisons, we confirmed our prior findings that students’ sense of belonging at the course level increased with time in the program (from sophomore to senior year), and that engineering identity increased with time in the program as well. In addition, we observed that seniors had higher perceived instrumentality, a sub-construct of FTP indicating their perceived usefulness of their courses in reaching their future goals, than sophomores and juniors. We found that course belongingness and FTP have the strongest influence on belongingness compared to other affective attributes we assessed. When identity and motivation were factored in, career outcome expectations were not influential to engineering belongingness. Finally, we found that time-oriented motivation (FTP) was also a mediator of this relationship through its influence on grit (consistency of interest). 
    more » « less
  5. Engineering undergraduates are exposed to a variety of writing curricula, such as first-year-composition courses, in their early program of study; however, they have difficulties meeting the expectations of writing in early engineering courses. On the other hand, instructors in entry-level engineering lab courses struggle to instruct lab report writing due to a wide range of student background in writing. When using the lens of learning transfer theories, which describe the processes and the effective extent to which past experiences affect learning and performance in a new situation, we can classify engineering students in three writing transfer modes: 1) concurrent transfer, which occurs when a rhetorically-focused technical writing class is taken concurrently or prior to engineering labs in the major; 2) vertical transfer, which occurs when a rhetorically-focused general education writing class is taken prior to engineering labs in the major; and 3) absent transfer, which occurs when no rhetorically-focused writing class exists (rather literature-focused) or writing-intensive courses are not required in the general education curriculum. This study aims to investigate how the engineering sophomore’s past writing experience affects their engineering lab report writing. Lab reports from four sophomore engineering courses (1 civil, 2 electrical, 1 general engineering) across three institutions collected for analysis consisted of two sets: the sample sets in early labs (for example, Lab 1) and in later labs (for example, the last lab) of the courses. A total of 46 reports (22 early and 24 later) were collected from 22 engineering sophomores during AY2019-2020. Four engineering faculty (1 civil, 1 electrical, and 2 mechanical engineering) developed a rubric based on lab report writing student outcomes, which are aligned with the existing outcomes such as ABET outcomes and the student outcomes from the Council of Writing Program Administrators (WPA). Data collected via early-later lab reports show that student outcomes related to writing conventions were scored high regardless of the transfer modes. The largest variations among three transfer modes were found in the student outcomes related to lab data presentation, analysis, and interpretation. In these outcomes, the concurrent transfer students had relatively high scores for both early and later reports, while the vertical transfer students improved their scores from relatively low in early reports to high in later reports. This research results show that the area of writing knowledge that has been most influenced by their writing curricula prior to sophomore engineering lab courses is disciplinary meaning-making through presenting, analyzing, and interpreting lab data for the technical audience. 
    more » « less