skip to main content


Search for: All records

Award ID contains: 1735878

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In civil and construction engineering education research, a focus has been on using 3D models to support students’ design comprehension. Despite this trend, the predominant mode of design communication in the industry relies on 2D plans and specifications, which typically supersede other modes of communication. Rather than focusing on the presentation of less common 3D content as an input to support students’ understanding of a design, this paper explores more common 2D inputs, but compares different visualization formats of student output in two educational interventions. In the first intervention, students document a construction sequence for wood-framed elements in a 2D worksheet format. In the second, students work with the same wood-framed design, but document their sequence through an augmented reality (AR) format where their physical interactions move full-scale virtual elements as if they were physically constructing the wood frame. Student approaches and performance were analyzed using qualitative attribute coding of video, audio, and written documentation of the student experience. Overall, results showed that the 2D worksheet format was simple to implement and was not mentally demanding to complete, but often corresponded with a lack of critical checks and a lack of mistake recognition from the students. The AR approach challenged students more in terms of cognitive load and completion rates but showed the potential for facilitating mistake recognition and self-remediation through visualization. These results suggest that when students are tasked with conceptualizing construction sequences from 2D documentation, the cognitive challenges associated with documenting a sequence in AR may support their recognition of their own mistakes in ways that may not be effectively supported through 2D documentation as an output for documenting and planning a construction sequence. The results presented in this paper provide insights on student tendencies, behaviors, and perceptions related to defining construction sequences from 2D documentation in order for educators to make informed decisions regarding the use of similar learning activities to prepare their students for understanding the 2D design documents used in industry. 
    more » « less
  2. Providing students with hands-on construction experiences enables them to apply conceptual knowledge to practical applications, but the high costs associated with this form of learning limit access to it. Therefore, this paper explores the use of augmented reality (AR) to enable students in a conventional classroom or lab setting to interact with virtual objects similar to how they would if they were physically constructing building components. More specifically, the authors tasked student participants with virtually constructing a wood-framed wall through AR with a Microsoft HoloLens. Participants were video-recorded and their behaviors were analyzed. Subsequently, observed behaviors in AR were analyzed and compared to expected behaviors in the physical environment. It was observed that students performing the tasks tended to mimic behaviors found in the physical environment in how they managed the virtual materials, leveraged physical tools in conjunction with virtual materials, and in their ability to recognize and fix mistakes. Some of the finer interactions observed with the virtual materials were found to be unique to the virtual environment, such as moving objects from a distance. Overall, these findings contribute to the understanding of how AR may be leveraged in classrooms to provide learning experiences that yield similar outcomes to those provided in more resource-intensive physical construction site environments. 
    more » « less
  3. This work in progress paper presents an assessment framework for an authentic learning activity in augmented reality (AR). Constant changes in technical and societal needs require educational programs to constantly rethink the status quo and explore ways to align future professionals’ formal education with emerging workforce demands. Such is critical for all professions — including those in the architecture, engineering, and construction (AEC) industry. While many may agree on the need to do this, what is less clear is the scholarly approach required for undertaking such an endeavor. Insights from studies associated with the Preparation for the Professions Program led by the Carnegie Foundation for the Advancement of Teaching offer a framework used for exploring professional preparation across professions is commonly referred to as the Three Apprenticeships—namely, Apprenticeships of the Head, the Hand, and the Heart. Within engineering-related fields, academic preparation for the profession primarily focuses on technical knowledge; but there is a need for more holistic, integrated learning experiences that involve different kinds of knowledge (Head), skills (Hand), and professional judgment (Heart). This study leverages the Three Apprenticeship framework to assess an integrated learning AEC experience in augmented reality (AR) by using real-time data collected from participants. Using the context of a children’s playground, participants were asked to redesign an existing play structure to better meet the needs of children, parents, and other stakeholders within the community. A five-metric assessment was developed to operationalize the head, hand, and heart constructs in this context and measure participants’ ability to think holistically in an authentic learning experience. These five assessment metrics included cost, time, safety, sustainability, and fun. This paper explores the development of this assessment and shares preliminary findings from the study. 
    more » « less
  4. null (Ed.)
  5. Effective construction engineering and management education requires hands-on experiences that have not traditionally been offered in classroom settings. Physical building competitions like Solar Decathlon are valuable for providing experiential learning opportunities that may support tacit and explicit knowledge development among students, but they are often not available to all students due to funding and resource limitations. Less resource intensive teaching strategies, such as project based learning, can mimic the benefit of physical experiences by providing context to learning content. This paper reviews project based learning literature to identify trends in reported learning gains from the adoption of this strategy. Additionally, emerging technologies offer the ability to create low cost, immersive multimedia environments that may be able to support the types of learning targeted by physical design and construction experiences. Literature on multimedia learning theory is explored to identify opportunities for multimedia applications to facilitate learnings derived by physical educational contexts, but with the use of increasingly affordable multimedia strategies. This paper resulted in identifying six learning gains that have a theoretical potential to be facilitated using augmented reality and virtual reality technologies. The theoretical potential was deduced based on prior research on teaching strategies that provide real-world context to learning content. The authors of this paper propose using the identified learning gains as targets to specifically design implementation studies to verify this potential. The learning gains identified in the results section can be targeted and measured in future research when empirically validating the use of immersive technologies for construction education. The contribution of this work is in synthesizing the learning gains that future researchers should target based on evidence from prior research in related learning contexts. 
    more » « less
  6. null (Ed.)
    Although some have called for engineering curricula that fully integrates learning in the head (cognitive), hand (skill), andheart (affective) domains, others acknowledge the difficulty of overhauling existing curriculum to adequately prioritize the‘‘heart’’. The opinions of experts are often consulted to inform curricular changes, but this is rarely compared to theopinions of novices. There is a need for a better understanding of both experts’ and novices’ perspectives on the role of the‘‘heart’’ in engineering education and in engineering work. With an emphasis on civil engineering, this study uses aconvergent parallel mixed methods research design and Shulman’s Three Apprenticeships framework to investigateexpert and novice perspectives on the priority of affective constructs in undergraduate education and their approach todesigning facilities for users with needs different from their own. Data was collected from civil engineering experts andnovices at an annual regional civil engineering-focused conference. Results suggest experts and novices may have differentperspectives on which values should be emphasized earlier versus later in civil engineering education. Implications of theresults from this study suggest that while many values should be emphasized in engineering education, it might beimportant for educators to emphasize certain values (e.g., compassion) earlier rather than later to assist in thedevelopment of a well-rounded engineer. 
    more » « less
  7. This work-in-progress paper presents highlights from a multi-year study aiming to develop and assess the impact of a mixed reality experience that sufficiently replicates the learning civil engineering students experience during a physical design and construction task. Human Centered Design principles and tenets of the Carnegie Foundation’s Three Apprenticeships Model (i.e., learning related to “Head”, “Hand”, and “Heart”) inform the project design, development, and assessments. The development of heart-focused assessments is one focus during the second year in this three-year project. This paper includes a brief overview of the project progress, in general, along with preliminary findings regarding the instrument development. It summarizes the results of a pilot study, including an item analysis of the survey responses. These findings offer preliminary evidence for the content validity and substantive validity of the instrument. Next steps and implications for the engineering education community are also discussed. 
    more » « less