skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of conversational role on phonetic alignment toward voice-AI and human interlocutors
Two studies investigated the influence of conversational role on phonetic imitation toward human and voice-AI interlocutors. In a Word List Task, the giver instructed the receiver on which of two lists to place a word; this dialogue task is similar to simple spoken interactions users have with voice-AI systems. In a Map Task, participants completed a fill-in-the-blank worksheet with the interlocutors, a more complex interactive task. Participants completed the task twice with both interlocutors, once as giver-of-information and once as receiver-of-information. Phonetic alignment was assessed through similarity rating, analysed using mixed effects logistic regressions. In the Word List Task, participants aligned to a greater extent toward the human interlocutor only. In the Map Task, participants as giver only aligned more toward the human interlocutor. Results indicate that phonetic alignment is mediated by the type of interlocutor and that the influence of conversational role varies across tasks and interlocutors.  more » « less
Award ID(s):
1911855
PAR ID:
10275444
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Language, Cognition and Neuroscience
ISSN:
2327-3798
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Increasingly, people are having conversational interactions with voice-AI systems, such as Amazon’s Alexa. Do the same social and functional pressures that mediate alignment toward human interlocutors also predict align patterns toward voice-AI? We designed an interactive dialogue task to investigate this question. Each trial consisted of scripted, interactive turns between a participant and a model talker (pre-recorded from either a natural production or voice-AI): First, participants produced target words in a carrier phrase. Then, a model talker responded with an utterance containing the target word. The interlocutor responses varied by 1) communicative affect (social) and 2) correctness (functional). Finally, participants repeated the carrier phrase. Degree of phonetic alignment was assessed acoustically between the target word in the model’s response and participants’ response. Results indicate that social and functional factors distinctly mediate alignment toward AI and humans. Findings are discussed with reference to theories of alignment and human-computer interaction. 
    more » « less
  2. null (Ed.)
    Speech alignment is where talkers subconsciously adopt the speech and language patterns of their interlocutor. Nowadays, people of all ages are speaking with voice-activated, artificially-intelligent (voice-AI) digital assistants through phones or smart speakers. This study examines participants’ age (older adults, 53–81 years old vs. younger adults, 18–39 years old) and gender (female and male) on degree of speech alignment during shadowing of (female and male) human and voice-AI (Apple’s Siri) productions. Degree of alignment was assessed holistically via a perceptual ratings AXB task by a separate group of listeners. Results reveal that older and younger adults display distinct patterns of alignment based on humanness and gender of the human model talkers: older adults displayed greater alignment toward the female human and device voices, while younger adults aligned to a greater extent toward the male human voice. Additionally, there were other gender-mediated differences observed, all of which interacted with model talker category (voice-AI vs. human) or shadower age category (OA vs. YA). Taken together, these results suggest a complex interplay of social dynamics in alignment, which can inform models of speech production both in human-human and human-device interaction. 
    more » « less
  3. null (Ed.)
    More and more, humans are engaging with voice-activated artificially intelligent (voice-AI) systems that have names (e.g., Alexa), apparent genders, and even emotional expression; they are in many ways a growing ‘social’ presence. But to what extent do people display sociolinguistic attitudes, developed from human-human interaction, toward these disembodied text-to-speech (TTS) voices? And how might they vary based on the cognitive traits of the individual user? The current study addresses these questions, testing native English speakers’ judgments for 6 traits (intelligent, likeable, attractive, professional, human-like, and age) for a naturally-produced female human voice and the US-English default Amazon Alexa voice. Following exposure to the voices, participants completed these ratings for each speaker, as well as the Autism Quotient (AQ) survey, to assess individual differences in cognitive processing style. Results show differences in individuals’ ratings of the likeability and human-likeness of the human and AI talkers based on AQ score. Results suggest that humans transfer social assessment of human voices to voice-AI, but that the way they do so is mediated by their own cognitive characteristics. 
    more » « less
  4. null (Ed.)
    The present study compares how individuals perceive gradient acoustic realizations of emotion produced by a human voice versus an Amazon Alexa text-to-speech (TTS) voice. We manipulated semantically neutral sentences spoken by both talkers with identical emotional synthesis methods, using three levels of increasing ‘happiness’ (0 %, 33 %, 66% ‘happier’). On each trial, listeners (native speakers of American English, n=99) rated a given sentence on two scales to assess dimensions of emotion: valence (negative-positive) and arousal (calm-excited). Participants also rated the Alexa voice on several parameters to assess anthropomorphism (e.g., naturalness, human-likeness, etc.). Results showed that the emotion manipulations led to increases in perceived positive valence and excitement. Yet, the effect differed by interlocutor: increasing ‘happiness’ manipulations led to larger changes for the human voice than the Alexa voice. Additionally, we observed individual differences in perceived valence/arousal based on participants’ anthropomorphism scores. Overall, this line of research can speak to theories of computer personification and elucidate our changng relationship with voice-AI technology. 
    more » « less
  5. As the influence of social robots in people’s daily lives grows, research on understanding people’s perception of robots including sociability, trust, acceptance, and preference becomes more pervasive. Research has considered visual, vocal, or tactile cues to express robots’ emotions, whereas little research has provided a holistic view in examining the interactions among different factors influencing emotion perception. We investigated multiple facets of user perception on robots during a conversational task by varying the robots’ voice types, appearances, and emotions. In our experiment, 20 participants interacted with two robots having four different voice types. While participants were reading fairy tales to the robot, the robot gave vocal feedback with seven emotions and the participants evaluated the robot’s profiles through post surveys. The results indicate that (1) the accuracy of emotion perception differed depending on presented emotions, (2) a regular human voice showed higher user preferences and naturalness, (3) but a characterized voice was more appropriate for expressing emotions with significantly higher accuracy in emotion perception, and (4) participants showed significantly higher emotion recognition accuracy with the animal robot than the humanoid robot. A follow-up study ([Formula: see text]) with voice-only conditions confirmed that the importance of embodiment. The results from this study could provide the guidelines needed to design social robots that consider emotional aspects in conversations between robots and users. 
    more » « less