skip to main content

This content will become publicly available on September 1, 2022

Title: Sequential Self-Folding of Shape Memory Polymer Sheets by Laser Rastering Toward Origami-Based Manufacturing
Abstract Origami-based fabrication strategies open the door for developing new manufacturing processes capable of producing complex three-dimensional (3D) geometries from two-dimensional (2D) sheets. Nevertheless, for these methods to translate into scalable manufacturing processes, rapid techniques for creating controlled folds are needed. In this work, we propose a new approach for controlled self-folding of shape memory polymer sheets based on direct laser rastering. We demonstrate that rapidly moving a CO2 laser over pre-strained polystyrene sheets results in creating controlled folds along the laser path. Laser interaction with the polymer induces localized heating above the glass transition temperature with a temperature gradient across the thickness of the thin sheets. This gradient of temperature results in a gradient of shrinkage owing to the viscoelastic relaxation of the polymer, favoring folding toward the hotter side (toward the laser source). We study the influence of laser power, rastering speed, fluence, and the number of passes on the fold angle. Moreover, we investigate process parameters that produce the highest quality folds with minimal undesired deformations. Our results show that we can create clean folds up to and exceeding 90 deg, which highlights the potential of our approach for creating lightweight 3D geometries with smooth surface finishes more » that are challenging to create using 3D printing methods. Hence, laser-induced self-folding of polymers is an inherently mass-customizable approach to manufacturing, especially when combined with cutting for integration of origami and kirigami. « less
Authors:
; ;
Award ID(s):
2028580
Publication Date:
NSF-PAR ID:
10275711
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
143
Issue:
9
ISSN:
1087-1357
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The purpose of this paper is to characterize the dynamics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a new process of directed self-folding of polymer sheets based on a resistively heated ribbon that is in contact with the sheets. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and the extent of local material flow. This method can be used to create practical three-dimensionalmore »(3D) structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples, and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. The results are quantitatively explained using a viscoelastic finite element model capable of describing bidirectional folds arising from the interplay between viscoelastic relaxation and strain mismatch between polystyrene and polyimide. Given the tunability of fold times and the extent of local material flow, resistive-heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering.« less
  2. In this paper, we report the development of tailored 3D-structured (engineered) polymer-metal interfaces to create enhanced 'engineered ionic polymer metal composite' (eIPMC) sensors towards soft, self-powered, high sensitivity strain sensor applications. We introduce a novel advanced additive manufacturing approach to tailor the morphology of the polymer-electrode interfaces via inkjet-printed polymer microscale features. We hypothesize that these features can promote inhomogeneous strain within the material upon the application of external pressure, responsible for improved compression sensing performance. We formalize a minimal physics-based chemoelectromechanical model to predict the linear sensor behavior of eIPMCs in both open-circuit and short-circuit sensing conditions. The modelmore »accounts for polymer-electrode interfacial topography to define the inhomogeneous mechanical response driving electrochemical transport in the eIPMC. Electrochemical experiments demonstrate improved electrochemical properties of the inkjet-printed eIPMCs as compared to the standard IPMC sensors fabricated from Nafion polymer sheets. Similarly, compression sensing results show a significant increase in sensing performance of inkjet-printed eIPMC. We also introduce two alternative methods of eIPMC fabrication for sub-millimeter features, namely filament-based fused-deposition manufacturing and stencil printing, and experimentally demonstrate their improved sensing performance. Our results demonstrate increasing voltage output associated to increasing applied mechanical pressure and enhanced performance of the proposed eIPMC sensors against traditional IPMC based compression sensors.« less
  3. Abstract In this paper, we report the development of tailored 3D-structured (engineered) polymer-metal interfaces to create enhanced ‘engineered ionic polymer metal composite’ (eIPMC) sensors towards soft, self-powered, high sensitivity strain sensor applications. We introduce a novel advanced additive manufacturing approach to tailor the morphology of the polymer-electrode interfaces via inkjet-printed polymer microscale features. We hypothesize that these features can promote inhomogeneous strain within the material upon the application of external pressure, responsible for improved compression sensing performance. We formalize a minimal physics-based chemoelectromechanical model to predict the linear sensor behavior of eIPMCs in both open-circuit and short-circuit sensing conditions. Themore »model accounts for polymer-electrode interfacial topography to define the inhomogeneous mechanical response driving electrochemical transport in the eIPMC. Electrochemical experiments demonstrate improved electrochemical properties of the inkjet-printed eIPMCs as compared to the standard IPMC sensors fabricated from Nafion polymer sheets. Similarly, compression sensing results show a significant increase in sensing performance of inkjet-printed eIPMC. We also introduce two alternative methods of eIPMC fabrication for sub-millimeter features, namely filament-based fused-deposition manufacturing and stencil printing, and experimentally demonstrate their improved sensing performance. Our results demonstrate increasing voltage output associated to increasing applied mechanical pressure and enhanced performance of the proposed eIPMC sensors against traditional IPMC based compression sensors.« less
  4. Recently, multi-stable origami structures and material systems have shown promising potentials to achieve multi-functionality. Especially, origami folding is fundamentally a three-dimensional mechanism, which imparts unique capabilities not seen in the more traditional multi-stable systems. This paper proposes and analytically examines a multi-stable origami cellular structure that can exhibit asymmetric energy barriers and a mechanical diode behavior in compression. Such a structure consists of many stacked Miura-ori sheets of different folding stiffness and accordion-shaped connecting sheets, and it can be divided into unit cells that features two different stable equilibria. To understand the desired diode behavior, this study focuses on twomore »adjacent unit cells and examines how folding can create a kinematic constraint onto the deformation of these two cells. Via estimating the elastic potential energy landscape of this dual cell system. we find that the folding-induced kinematic constraint can significantly increase the potential energy barrier for compressing the dual-cell structure from a certain stable state to another, however, the same constraint would not increase the energy barrier of the opposite extension switch. As a result, one needs to apply a large force to compress the origami cellular structure but only a small force to stretch it, hence a mechanical diode behavior. Results of this study can open new possibilities for achieving structural motion rectifying, wave propagation control, and embedded mechanical computation.« less
  5. Origami, the ancient Japanese art of paper folding, is not only an inspiring technique to create sophisticated shapes, but also a surprisingly powerful method to induce nonlinear mechanical properties. Over the last decade, advances in crease design, mechanics modeling, and scalable fabrication have fostered the rapid emergence of architected origami materials. These materials typically consist of folded origami sheets or modules with intricate 3D geometries, and feature many unique and desirable material properties like auxetics, tunable nonlinear stiffness, multistability, and impact absorption. Rich designs in origami offer great freedom to design the performance of such origami materials, and folding offersmore »a unique opportunity to efficiently fabricate these materials at vastly different sizes. Here, recent studies on the different aspects of origami materials—geometric design, mechanics analysis, achieved properties, and fabrication techniques—are highlighted and the challenges ahead discussed. The synergies between these different aspects will continue to mature and flourish this promising field.« less