skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variational Level Set Method for Topology Optimization of Origami Fold Patterns
Abstract With specific fold patterns, a 2D flat origami can be converted into a complex 3D structure under an external driving force. Origami inspires the engineering design of many self-assembled and re-configurable devices. This work aims to apply the level set-based topology optimization to the generative design of origami structures. The origami mechanism is simulated using thin shell models where the deformation on the surface and the deformation in the normal direction can be simplified and well captured. Moreover, the fold pattern is implicitly represented by the boundaries of the level set function. The folding topology is optimized by minimizing a new multiobjective function that balances kinematic performance with structural stiffness and geometric requirements. Besides regular straight folds, our proposed model can mimic crease patterns with curved folds. With the folding curves implicitly represented, the curvature flow is utilized to control the complexity of the folds generated. The performance of the proposed method is demonstrated by the computer generation and physical validation of two thin shell origami designs.  more » « less
Award ID(s):
1762287
PAR ID:
10351911
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
144
Issue:
8
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional shapes, have many potential engineering applications. Though significant effort in recent years has been devoted to designing fold patterns that can achieve a variety of target shapes, recent work has also made clear that many origami structures exhibit multiple folding pathways, with a proliferation of geometric folding pathways as the origami structure becomes complex. The competition between these pathways can lead to structures that are programmed for one shape, yet fold incorrectly. To disentangle the features that lead to misfolding, we introduce a model of self-folding origami that accounts for the finite stretching rigidity of the origami faces and allows the computation of energy landscapes that lead to misfolding. We find that, in addition to the geometrical features of the origami, the finite elasticity of the nearly-flat origami configurations regulates the proliferation of potential misfolded states through a series of saddle-node bifurcations. We apply our model to one of the most common origami motifs, the symmetric “bird's foot,” a single vertex with four folds. We show that though even a small error in programmed fold angles induces metastability in rigid origami, elasticity allows one to tune resilience to misfolding. In a more complex design, the “Randlett flapping bird,” which has thousands of potential competing states, we further show that the number of actual observed minima is strongly determined by the structure's elasticity. In general, we show that elastic origami with both stiffer folds and less bendable faces self-folds better. 
    more » « less
  2. Origami folding and thin structure buckling are intensively studied for structural transformations with large packing ratio for various biomedical, robotic, and aerospace applications. The folding of circular rings has shown bistable snap‐through deformation under simple twisting motion and demonstrates a large area change to 11% of its undeformed configuration. Motivated by the large area change and the self‐guided deformation through snap‐folding, it is intended to design ring origami assemblies with unprecedented packing ratios. Herein, through finite‐element analysis, snap‐folding behaviors of single ring with different geometries (circular, elliptical, rounded rectangular, and rounded triangular shapes) are studied for ring origami assemblies for functional foldable structures. Geometric parameters' effects on the foldability, stability, and the packing ratio are investigated and are validated experimentally. With different rings as basic building blocks, the folding of ring origami assemblies including linear‐patterned rounded rectangular rings, radial‐patterned elliptical rings, and 3D crossing circular rings is further experimentally demonstrated, which show significant packing ratios of 7% and 2.5% of the initial areas, and 0.3% of the initial volume, respectively. It is envisioned that the reported snap‐folding of origami rings will provide alternative strategies to design foldable/deployable structures and devices with reliable self‐guided deformation and large area change. 
    more » « less
  3. null (Ed.)
    Abstract Origami-based fabrication strategies open the door for developing new manufacturing processes capable of producing complex three-dimensional (3D) geometries from two-dimensional (2D) sheets. Nevertheless, for these methods to translate into scalable manufacturing processes, rapid techniques for creating controlled folds are needed. In this work, we propose a new approach for controlled self-folding of shape memory polymer sheets based on direct laser rastering. We demonstrate that rapidly moving a CO2 laser over pre-strained polystyrene sheets results in creating controlled folds along the laser path. Laser interaction with the polymer induces localized heating above the glass transition temperature with a temperature gradient across the thickness of the thin sheets. This gradient of temperature results in a gradient of shrinkage owing to the viscoelastic relaxation of the polymer, favoring folding toward the hotter side (toward the laser source). We study the influence of laser power, rastering speed, fluence, and the number of passes on the fold angle. Moreover, we investigate process parameters that produce the highest quality folds with minimal undesired deformations. Our results show that we can create clean folds up to and exceeding 90 deg, which highlights the potential of our approach for creating lightweight 3D geometries with smooth surface finishes that are challenging to create using 3D printing methods. Hence, laser-induced self-folding of polymers is an inherently mass-customizable approach to manufacturing, especially when combined with cutting for integration of origami and kirigami. 
    more » « less
  4. Origami-inspired structures and material systems have been used in many engineering applications because of their unique kinematic and mechanical properties induced by folding. However, accurately modeling and analyzing origami folding and the associated mechanical properties are challenging, especially when large deformation and dynamic responses need to be considered. In this paper, we formulate a high-fidelity model — based on the iso-parametric Absolute Nodal Coordinate Formulation (ANCF) — for simulating the dynamic folding behaviors of origami involving large deformation. The centerpiece of this new model is the characterization of crease deformation. To this end, we model the crease using rotational spring at the nodes. The corresponding folding angle is calculated based on the local surface normal vectors. Compared to the currently popular analytical methods for analyzing origami, such as the rigid-facet and equivalent bar-hinge approach, this new model is more accurate in that it can describe the large crease and facet deformation without imposing many assumptions. Meanwhile, the ANCF based origami model can be more efficient computationally compared to the traditional finite element simulations. Therefore, this new model can lay down the foundation for high-fidelity origami analysis and design that involves mechanics and dynamics. 
    more » « less
  5. Origami structures with a large number of excess folds are capable of storing distinguishable geometric states that are energetically equivalent. As the number of excess folds is reduced, the system has fewer equivalent states and can eventually become rigid. We quantify this transition from a floppy to a rigid state as a function of the presence of folding constraints in a classic origami tessellation, Miura-ori. We show that in a fully triangulated Miura-ori that is maximally floppy, adding constraints via the elimination of diagonal folds in the quads decreases the number of degrees of freedom in the system, first linearly and then nonlinearly. In the nonlinear regime, mechanical cooperativity sets in via a redundancy in the assignment of constraints, and the degrees of freedom depend on constraint density in a scale- invariant manner. A percolation transition in the redundancy in the constraints as a function of constraint density suggests how excess folds in an origami structure can be used to store geometric information in a scale-invariant way. 
    more » « less