Defenses against adversarial examples, such as adversarial training, are typically tailored to a single perturbation type (e.g., small Linf-noise). For other perturbations, these defenses offer no guarantees and, at times, even increase the model’s vulnerability. Our aim is to understand the reasons underlying this robustness trade-off, and to train models that are simultaneously robust to multiple perturbation types. We prove that a trade-off in robustness to different types of Lp-bounded and spatial perturbations must exist in a natural and simple statistical setting. We corroborate our formal analysis by demonstrating similar robustness trade-offs on MNIST and CIFAR10. Building upon new multi-perturbation adversarial training schemes, and a novel efficient attack for finding L1-bounded adversarial examples, we show that no model trained against multiple attacks achieves robustness competitive with that of models trained on each attack individually. In particular, we uncover a pernicious gradient-masking phenomenon on MNIST, which causes adversarial training with first-order Linf, L1 and L2 adversaries to achieve merely 50% accuracy. Our results question the viability and computational scalability of extending adversarial robustness, and adversarial training, to multiple perturbation types.
more »
« less
Laplacian networks: bounding indicator function smoothness for neural networks robustness
For the past few years, deep learning (DL) robustness (i.e. the ability to maintain the same decision when inputs are subject to perturbations) has become a question of paramount importance, in particular in settings where misclassification can have dramatic consequences. To address this question, authors have proposed different approaches, such as adding regularizers or training using noisy examples. In this paper we introduce a regularizer based on the Laplacian of similarity graphs obtained from the representation of training data at each layer of the DL architecture. This regularizer penalizes large changes (across consecutive layers in the architecture) in the distance between examples of different classes, and as such enforces smooth variations of the class boundaries. We provide theoretical justification for this regularizer and demonstrate its effectiveness to improve robustness on classical supervised learning vision datasets for various types of perturbations. We also show it can be combined with existing methods to increase overall robustness.
more »
« less
- Award ID(s):
- 2009032
- PAR ID:
- 10275734
- Date Published:
- Journal Name:
- APSIPA Transactions on Signal and Information Processing
- Volume:
- 10
- ISSN:
- 2048-7703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Low-dimensional structure of data can solve the adversarial robustness-accuracy conflict for machine learning systems. Modern machine learning systems have demonstrated breakthrough performance in a multitude of applications. However, they are known to be highly vulnerable to small perturbations to the input data, known as adversarial attacks. There are many well-documented examples of such behavior, for example small perturbations of an image, which is imperceptible to a human, can significantly degrade performance of modern classifiers. Adversarial training has been put forward as a way to improve robustness of learning algorithms to adversarial attacks. However, this benefit often comes at the cost of decreasing accuracy on natural unperturbed inputs, pointing to a potential conflict between adversarial robustness and standard accuracy. In “Adversarial robustness for latent models: Revisiting the robust-standard accuracies tradeoff,” Adel Javanmard and Mohammad Mehrabi develop a theory to show that when the data enjoys low-dimensional structure, then it is possible to train models that are nearly optimal with respect to both, the standard and robust accuracies.more » « less
-
Vision transformers (ViTs) have recently set off a new wave in neural architecture design thanks to their record-breaking performance in various vision tasks. In parallel, to fulfill the goal of deploying ViTs into real-world vision applications, their robustness against potential malicious attacks has gained increasing attention. In particular, recent works show that ViTs are more robust against adversarial attacks as compared with convolutional neural networks (CNNs), and conjecture that this is because ViTs focus more on capturing global interactions among different input/feature patches, leading to their improved robustness to local perturbations imposed by adversarial attacks. In this work, we ask an intriguing question: “Under what kinds of perturbations do ViTs become more vulnerable learners compared to CNNs?” Driven by this question, we first conduct a comprehensive experiment regarding the robustness of both ViTs and CNNs under various existing adversarial attacks to understand the underlying reason favoring their robustness. Based on the drawn insights, we then propose a dedicated attack framework, dubbed Patch-Fool, that fools the self-attention mechanism by attacking its basic component (i.e., a single patch) with a series of attention-aware optimization techniques. Interestingly, our Patch-Fool framework shows for the first time that ViTs are not necessarily more robust than CNNs against adversarial perturbations. In particular, we find that ViTs are more vulnerable learners compared with CNNs against our Patch-Fool attack which is consistent across extensive experiments, and the observations from Sparse/Mild Patch-Fool, two variants of Patch-Fool, indicate an intriguing insight that the perturbation density and strength on each patch seem to be the key factors that influence the robustness ranking between ViTs and CNNs. It can be expected that our Patch-Fool framework will shed light on both future architecture designs and training schemes for robustifying ViTs towards their real-world deployment. Our codes are available at https://github.com/RICE-EIC/Patch-Fool.more » « less
-
null (Ed.)Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.more » « less
-
With recent advances in Deep Learning (DL) models, the healthcare domain has seen an increased adoption of neural networks for clinical diagnosis, monitoring, and prediction. Deep Learning models have been developed for various tasks using 1D (one-dimensional) time-series signals. Time-series healthcare data, typically collected through sensors, have specific structures and characteristics such as frequency and amplitude. The nature of these features, including varying sampling rates that depend on the instruments used for sensing, poses challenges in handling them. Electrocardiograms (ECG), a class of 1D time-series signals representing the electrical activity of the heart, have been used to develop heart condition classification decision support systems. The sampling rate of these signals, influenced by different ECG instruments as well as their calibrations, can greatly impact the learning functions of deep learning models and subsequently, their decision outcomes. This hinders the development and deployment of generalized, DL-based ECG classifiers that can work with data from a variety of ECG instruments, particularly when the sampling rate of the training data remains unknown to users. Moreover, DL models are not designed to recognize the sampling rate of the testing data on which they are being deployed, further complicating their effective application across diverse clinical settings. In this study, we investigated the effect of different sampling rates of time-series ECG signals on DL-based ECG classifiers. To the best of our knowledge, this is the first work to understand how varying sampling rates affect the performance of DL-based models for classifying 1D time-series ECG signals. Through our comprehensive experiments, we showed that accuracy can drop by as much as 20% when the training and testing sampling rates are different. We provide visual explanations to understand the differences in learned model features through activation maps when the sampling rates for training and testing data are different. We also investigated potential strategies to address the challenges posed by different sampling rates: (i) transfer learning, (ii) resampling, and (iii) training a DL model using ECG data at different sampling rates.more » « less
An official website of the United States government

