skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Cost-effectiveness of combining drug and environmental treatments for environmentally transmitted diseases
Control of neglected tropical diseases (NTDs) via mass drug administration (MDA) has increased considerably over the past decade, but strategies focused exclusively on human treatment show limited efficacy. This paper investigated trade-offs between drug and environmental treatments in the fight against NTDs by using schistosomiasis as a case study. We use optimal control techniques where the planner’s objective is to treat the disease over a time horizon at the lowest possible total cost, where the total costs include treatment, transportation and damages (reduction in human health). We show that combining environmental treatments and drug treatments reduces the dependency on MDAs and that this reduction increases when the planners take a longer-run perspective on the fight to reduce NTDs. Our results suggest that NTDs with environmental reservoirs require moving away from a reliance solely on MDA to integrated treatment involving investment in both drug and environmental controls.  more » « less
Award ID(s):
1414102 2024383 2011179
NSF-PAR ID:
10275839
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
287
Issue:
1933
ISSN:
0962-8452
Page Range / eLocation ID:
20200966
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Swimmer's itch is an emerging disease caused by flatworm parasites that often use water birds as definitive hosts. When parasite larvae penetrate human skin they initiate localized inflammation that leads to intense itching. Concerns about this issue have been growing recently due to an apparent increase in the global occurrence of swimmer's itch and its subsequent impacts on recreational activities and associated revenues. Past study has identified the common merganser as a key definitive host for these worms in the United States; a number of snail species serve as intermediate hosts. Although previous attempts at controlling swimmer's itch have targeted snails, a handful of efforts have concentrated on treating water birds with the anthelmintic drug, praziquantel. We construct a mathematical model of swimmer's itch and its treatment within the infected merganser population. Our goal is to identify merganser treatment regimes that minimize the number of infected snails thereby reducing the risk of human infections. Optimal control of bird hosts is defined analytically and we include numerical simulations assuming different resource‐allocation strategies. Results from the study may help identify treatment protocols that lower merganser infection rates and ultimately reduce the occurrence of swimmer's itch in freshwater systems throughout the Midwest.

    Recommendations for Resource Managers

    Regardless of the time and monetary resources available, praziquantel treatment frequency should increase as mergansers arrive on the lake with continued treatments (albeit at reduced levels) until the end of the residency period.

    Allocating plenty of resources towards the treatment of mergansers predicted a sharp drop in infected birds, which then remained close to zero throughout the remainder of the residency period. This approach reduced schistosome infection in mergansers and kept snail infections within the idealized range during times of peak recreational activity. Consequently, human cases of swimmer's itch would be expected to be low to nonexistent. Furthermore, our treatment‐longevity computation suggested that subsequent praziquantel dosing would not be required for a number of years.

    Under more limited resources, the number of birds treated per day was much smaller throughout the residency period; however, even under these circumstances (which equated to treating approximately one bird every 5 days), simulated infected merganser densities were reduced to the point where snail infections remained below epidemic levels through to the end of the recreational period. Treatment longevity was shorter compared with the high‐resource option, but still extended 122 days into Season 2 (posttreatment).

    We also used our model to investigate situations where lake managers and/or federal agencies might be taxed in terms of the time available to continuously treat mergansers on a given lake. An individual scientist may only have a single day (or two) to dose birds, rather than continuously administering praziquantel throughout the birds' residency period. If <77% of the total number of arriving birds can be treated in a single day, we recommend praziquantel administrations when the number of mergansers reaches the maximum that can be successfully treated. In addition, model simulations demonstrate that if managers are able to treat a large number of birds, they should wait until the end of the migration period.

     
    more » « less
  2. Abstract

    Delivery of nucleic acids into solid tumor environments remains a pressing challenge. This study examines the ability of macrophages to horizontally transfer small interfering RNA (siRNA) lipoplexes to cancer cells. Macrophages are a natural candidate for a drug carrier because of their ability to accumulate at high densities into many cancer types, including, breast, prostate, brain, and colon cancer. Here, it is demonstrated that macrophages can horizontally transfer siRNA to cancer cells during in vitro coculture. The amount of transfer can be dosed depending on the amount of siRNA loaded and total number of macrophages delivered. Macrophages loaded with calcium integrin binding protein‐1 (CIB1)‐siRNA result in decreased tumorsphere growth and decreased mRNA expression of CIB1 and KI67 in MDA‐MB‐468 human breast cancer cells. Adoptive transfer of macrophages transfected with CIB1‐siRNA localizes to the orthotopic MDA‐MB‐468 tumor. Furthermore, it is reported that macrophage activation can modulate this transfer process as well as intracellular trafficking proteinRab27a. As macrophages are heavily involved in tumor progression, understanding how to use macrophages for drug delivery can substantially benefit the treatment of tumors.

     
    more » « less
  3. This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration. In vivo studies conducted in the syngeneic 4T1 model, which closely mimics human TNBC in terms of sites of metastasis, reveal reduced tumor burden and lung metastasis. The mechanism of action of 4SC-202 may involve effects on cancer stem cells (CSC) which can self-renew and form metastatic lesions. Approximately 5% of the total 4T1 cell population grown in three-dimensional scaffolds had a distinct CD44high/CD24low CSC profile which decreased after treatment. Bulk transcriptome (RNA) sequencing analyses of 4T1 tumors reveal changes in metastasis-related pathways in 4SC-202-treated tumors, including changes to expression levels of genes implicated in cell migration and cell motility. In summary, 4SC-202 treatment of tumors from a highly metastatic murine model of TNBC reduces metastasis and warrants further preclinical studies. 
    more » « less
  4. Abstract There is a need for new in vitro systems that enable pharmaceutical companies to collect more physiologically-relevant information on drug response in a low-cost and high-throughput manner. For this purpose, three-dimensional (3D) spheroidal models have been established as more effective than two-dimensional models. Current commercial techniques, however, rely heavily on self-aggregation of dissociated cells and are unable to replicate key features of the native tumor microenvironment, particularly due to a lack of control over extracellular matrix components and heterogeneity in shape, size, and aggregate forming tendencies. In this study, we overcome these challenges by coupling tissue engineering toolsets with microfluidics technologies to create engineered cancer microspheres. Specifically, we employ biosynthetic hydrogels composed of conjugated poly(ethylene glycol) (PEG) and fibrinogen protein (PEG-Fb) to create engineered breast and colorectal cancer tissue microspheres for 3D culture, tumorigenic characterization, and examination of potential for high-throughput screening (HTS). MCF7 and MDA-MB-231 cell lines were used to create breast cancer microspheres and the HT29 cell line and cells from a stage II patient-derived xenograft (PDX) were encapsulated to produce colorectal cancer (CRC) microspheres. Using our previously developed microfluidic system, highly uniform cancer microspheres (intra-batch coefficient of variation (CV) ≤ 5%, inter-batch CV < 2%) with high cell densities (>20×106 cells/ml) were produced rapidly, which is critical for use in drug testing. Encapsulated cells maintained high viability and displayed cell type-specific differences in morphology, proliferation, metabolic activity, ultrastructure, and overall microsphere size distribution and bulk stiffness. For PDX CRC microspheres, the percentage of human (70%) and CRC (30%) cells was maintained over time and similar to the original PDX tumor, and the mechanical stiffness also exhibited a similar order of magnitude (103 Pa) to the original tumor. The cancer microsphere system was shown to be compatible with an automated liquid handling system for administration of drug compounds; MDA-MB-231 microspheres were distributed in 384 well plates and treated with staurosporine (1 μM) and doxorubicin (10 μM). Expected responses were quantified using CellTiter-Glo® 3D, demonstrating initial applicability to HTS drug discovery. PDX CRC microspheres were treated with Fluorouracil (5FU) (10 to 500 μM) and displayed a decreasing trend in metabolic activity with increasing drug concentration. Providing a more physiologically relevant tumor microenvironment in a high-throughput and low-cost manner, the PF hydrogel-based cancer microspheres could potentially improve the translational success of drug candidates by providing more accurate in vitro prediction of in vivo drug efficacy. Citation Format: Elizabeth A. Lipke, Wen J. Seeto, Yuan Tian, Mohammadjafar Hashemi, Iman Hassani, Benjamin Anbiah, Nicole L. Habbit, Michael W. Greene, Dmitriy Minond, Shantanu Pradhan. Production of cancer tissue-engineered microspheres for high-throughput screening [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 175. 
    more » « less
  5. Biotic interactions structure ecological communities but abiotic factors affect the strength of these relationships. These interactions are difficult to study in soils due to their vast biodiversity and the many environmental factors that affect soil species. The McMurdo Dry Valleys (MDV), Antarctica, are relatively simple soil ecosystems compared to temperate soils, making them an excellent study system for the trophic relationships of soil. Soil microbes and relatively few species of nematodes, rotifers, tardigrades, springtails, and mites are patchily distributed across the cold, dry landscape, which lacks vascular plants and terrestrial vertebrates. However, glacier and permafrost melt are expected to cause shifts in soil moisture and solutes across this ecosystem. To test how increased moisture and salinity affect soil invertebrates and their biotic interactions, we established a laboratory microcosm experiment (4 community × 2 moisture × 2 salinity treatments). Community treatments were: (1) Bacteria only (control), (2) Scottnema (S. lindsayae + bacteria), (3) Eudorylaimus (E. antarcticus + bacteria), and (4) Mixed (S. lindsayae + E. antarcticus + bacteria). Salinity and moisture treatments were control and high. High moisture reduced S. lindsayae adults, while high salinity reduced the total S. lindsayae population. We found that S. lindsayae exerted top-down control over soil bacteria populations, but this effect was dependent on salinity treatment. In the high salinity treatment, bacteria were released from top-down pressure as S. lindsayae declined. Ours was the first study to empirically demonstrate, although in lab microcosm conditions, top-down control in the MDV soil food web. 
    more » « less