Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mireji, Paul O (Ed.)BackgroundSchistosomiasis, a chronic parasitic disease, remains a public health issue in tropical and subtropical regions, especially in low and moderate-income countries lacking assured access to safe water and proper sanitation. A national prevalence survey carried out by the Brazilian Ministry of Health from 2011 to 2015 found a decrease in human infection rates to 1%, with 19 out of 26 states still classified as endemic areas. There is a risk of schistosomiasis reemerging as a public health concern in low-endemic regions. This study proposes an integrated landscape-based approach to aid surveillance and control strategies for schistosomiasis in low-endemic areas. Methodology/Principal findingsIn the Middle Paranapanema river basin, specific landscapes linked to schistosomiasis were identified using a comprehensive methodology. This approach merged remote sensing, environmental, socioeconomic, epidemiological, and malacological data. A team of experts identified ten distinct landscape categories associated with varying levels of schistosomiasis transmission potential. These categories were used to train a supervised classification machine learning algorithm, resulting in a 92.5% overall accuracy and a 6.5% classification error. Evaluation revealed that 74.6% of collected snails from water collections in five key municipalities within the basin belonged to landscape types with higher potential forS. mansoniinfection. Landscape connectivity metrics were also analysed. Conclusions/SignificanceThis study highlights the role of integrated landscape-based analyses in informing strategies for eliminating schistosomiasis. The methodology has produced new schistosomiasis risk maps covering the entire basin. The region’s low endemicity can be partly explained by the limited connectivity among grouped landscape-units more prone to triggering schistosomiasis transmission. Nevertheless, changes in social, economic, and environmental landscapes, especially those linked to the rising pace of incomplete urbanization processes in the region, have the potential to increase risk of schistosomiasis transmission. This study will help target interventions to bring the region closer to schistosomiasis elimination.more » « lessFree, publicly-accessible full text available November 4, 2025
-
Abstract Aedes aegyptimosquitos are the primary vector for dengue, chikungunya, and Zika viruses and tend to breed in small containers of water, with a propensity to breed in small piles of trash and abandoned tires. This study piloted the use of aerial imaging to map and classify potentialAe. aegyptibreeding sites with a specific focus on trash, including discarded tires. Aerial images of coastal and inland sites in Kenya were obtained using an unmanned aerial vehicle. Aerial images were reviewed for identification of trash and suspected trash mimics, followed by extensive community walk-throughs to identify trash types and mimics by description and ground photography. An expert panel reviewed aerial images and ground photos to develop a classification scheme and evaluate the advantages and disadvantages of aerial imaging versus walk-through trash mapping. A trash classification scheme was created based on trash density, surface area, potential for frequent disturbance, and overall likelihood of being a productiveAe. aegyptibreeding site. Aerial imaging offers a novel strategy to characterize, map, and quantify trash at risk of promotingAe. aegyptiproliferation, generating opportunities for further research on trash associations with disease and trash interventions.more » « less
-
Abstract Many infectious pathogens spend a significant portion of their life cycles in the environment or in animal hosts, where ecological interactions with natural enemies may influence pathogen transmission to people. Yet, our understanding of natural enemy opportunities for human disease control is lacking, despite widespread uptake and success of natural enemy solutions for pest and parasite management in agriculture.Here we explore three reasons why conserving, restoring or augmenting specific natural enemies in the environment could offer a promising complement to conventional clinical strategies to fight environmentally mediated pathogens and parasites. (a) Natural enemies of human infections abound in nature, largely understudied and undiscovered; (b) natural enemy solutions could provide ecological options for infectious disease control where conventional interventions are lacking; and, (c) many natural enemy solutions could provide important co‐benefits for conservation and human well‐being.We illustrate these three arguments with a broad set of examples whereby natural enemies of human infections have been used or proposed to curb human disease burden, with some clear successes. However, the evidence base for most proposed solutions is sparse, and many opportunities likely remain undiscovered, highlighting opportunities for future research. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
-
Abstract Vector‐borne diseases (VBDs) are embedded within complex socio‐ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population‐level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.more » « less
-
Free, publicly-accessible full text available December 1, 2025
-
Dar, Kamran Shaukat (Ed.)Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions. Here we address key questions about SDM application, using schistosomiasis risk in Brazil as a case study. Schistosomiasis is transmitted to humans through contact with the free-living infectious stage ofSchistosomaspp. parasites released from freshwater snails, the parasite’s obligate intermediate hosts. In this study, we compared snail SDM performance across machine learning (ML) approaches (MaxEnt, Random Forest, and Boosted Regression Trees), geographic extents (national, regional, and state), types of presence data (expert-collected and publicly-available), and snail species (Biomphalaria glabrata,B.straminea, andB.tenagophila). We used high-resolution (1km) climate, hydrology, land-use/land-cover (LULC), and soil property data to describe the snails’ ecological niche and evaluated models on multiple criteria. Although all ML approaches produced comparable spatially cross-validated performance metrics, their suitability maps showed major qualitative differences that required validation based on local expert knowledge. Additionally, our findings revealed varying importance of LULC and bioclimatic variables for different snail species at different spatial scales. Finally, we found that models using publicly-available data predicted snail distribution with comparable AUC values to models using expert-collected data. This work serves as an instructional guide to SDM methods that can be applied to a range of vector-borne and zoonotic diseases. In addition, it advances our understanding of the relevant environment and bioclimatic determinants of schistosomiasis risk in Brazil.more » « lessFree, publicly-accessible full text available August 2, 2025
-
Coffeng, Luc E (Ed.)The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis’ thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages ofS.mansoniandS.haematobiumand their obligate host snails, i.e.,Biomphalariaspp. andBulinusspp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission ofS.mansoniandS.haematobiumrange between 23.1–27.3°C and 23.6–27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.more » « less
-
Background:Schistosomiasis is endemic throughout all regions of Côte d’Ivoire, however, species of the intermediate snail host vary across bioclimatic zones. Hence, a deeper knowledge of the influence of climatic on the life history traits of the intermediate snail host is crucial to understand the environmental determinants of schistosomiasis in a rapidly changing climate. The aim of this study was to run a common garden experiment to assess differences in survival, somatic growth and fecundity of bothBulinus truncatusandBiomphalaria pfeifferisnails collected in three different bioclimatic areas. Methods:A cross-sectional malacological survey was conducted in February 2021 in the south, center and north of Côte d’Ivoire. We sampled two populations ofB. truncatus, the intermediate host snail ofSchistosoma haematobium, from northern and central Côte d’Ivoire, and two populations ofBi.pfeifferi, the intermediate host snail forSchistosoma mansoni, from the southern and central regions. Snails collected at the human-water contact sites were brought in the laboratory where they reproduced. The first generation snails (G1) for each population were reared under the same laboratory conditions, i.e., at 24°C–26°C, during 63 days (9 weeks), to estimate survival, growth, and fecundity. Results:We found that G1Bulinussnails from the north population showed higher survival and growth rates during our study and higher number of eggs at first reproduction, compared to the ones from the central region. ForBi.pfeifferi, no significant difference in survival rate was observed between G1snails from the southern and central populations, whereas those from the south exhibited higher growth rates and higher number of eggs per individual at first reproduction than G1snails from the central population. Conclusion:Our study provides evidence for heterogeneity in snails’ life-history traits in response to temperature among the populations from the three climatic regions. Further experiments from multiple populations are needed to confirm that snails express traits under optimal conditions, can lead to expansion of their geographical range and hence an increase in the risk of schistosomiasis transmission. Transplantation experiments will be required to assess implications of the changing climate on snails persistence, distribution and abundance.more » « less
-
Mancinelli, Giorgio (Ed.)The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis–a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrataandBulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.more » « less