skip to main content


Title: Closed-loop wavefront sensing and correction in the mouse brain with computed optical coherence microscopy

Optical coherence microscopy (OCM) uses interferometric detection to capture the complex optical field with high sensitivity, which enables computational wavefront retrieval using back-scattered light from the sample. Compared to a conventional wavefront sensor, aberration sensing with OCM via computational adaptive optics (CAO) leverages coherence and confocal gating to obtain signals from the focus with less cross-talk from other depths or transverse locations within the field-of-view. Here, we present an investigation of the performance of CAO-based aberration sensing in simulation, bead phantoms, andex vivomouse brain tissue. We demonstrate that, due to the influence of the double-pass confocal OCM imaging geometry on the shape of computed pupil functions, computational sensing of high-order aberrations can suffer from signal attenuation in certain spatial-frequency bands and shape similarity with lower order counterparts. However, by sensing and correcting only low-order aberrations (astigmatism, coma, and trefoil), we still successfully corrected tissue-induced aberrations, leading to 3× increase in OCM signal intensity at a depth of ∼0.9 mm in a freshly dissectedex vivomouse brain.

 
more » « less
Award ID(s):
1752405
PAR ID:
10276179
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
12
Issue:
8
ISSN:
2156-7085
Format(s):
Medium: X Size: Article No. 4934
Size(s):
Article No. 4934
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Label-free optical microscopy has matured as a noninvasive tool for biological imaging; yet, it is criticized for its lack of specificity, slow acquisition and processing times, and weak and noisy optical signals that lead to inaccuracies in quantification. We introduce FOCALS (Fast Optical Coherence, Autofluorescence Lifetime imaging, and Second harmonic generation) microscopy capable of generating NAD(P)H fluorescence lifetime, second harmonic generation (SHG), and polarization-sensitive optical coherence microscopy (OCM) images simultaneously. Multimodal imaging generates quantitative metabolic and morphological profiles of biological samples in vitro, ex vivo, and in vivo. Fast analog detection of fluorescence lifetime and real-time processing on a graphical processing unit enables longitudinal imaging of biological dynamics. We detail the effect of optical aberrations on the accuracy of FLIM beyond the context of undistorting image features. To compensate for the sample-induced aberrations, we implemented a closed-loop single-shot sensorless adaptive optics solution, which uses computational adaptive optics of OCM for wavefront estimation within 2 s and improves the quality of quantitative fluorescence imaging in thick tissues. Multimodal imaging with complementary contrasts improves the specificity and enables multidimensional quantification of the optical signatures in vitro, ex vivo, and in vivo, fast acquisition and real-time processing improve imaging speed by 4–40 × while maintaining enough signal for quantitative nonlinear microscopy, and adaptive optics improves the overall versatility, which enable FOCALS microscopy to overcome the limits of traditional label-free imaging techniques.

     
    more » « less
  2. Fourier ptychographic microscopy is a computational imaging technique that provides quantitative phase information and high resolution over a large field-of-view. Although the technique presents numerous advantages over conventional microscopy, model mismatch due to unknown optical aberrations can significantly limit reconstruction quality. A practical way of correcting for aberrations without additional data capture is through algorithmic self-calibration, in which a pupil recovery step is embedded into the reconstruction algorithm. However, software-only aberration correction is limited in accuracy. Here, we evaluate the merits of implementing a simple, dedicated calibration procedure for applications requiring high accuracy. In simulations, we find that for a target sample reconstruction error, we can image without any aberration corrections only up to a maximum aberration magnitude ofλ/40. When we use algorithmic self-calibration, we can tolerate an aberration magnitude up toλ/10 and with our proposed diffuser calibration technique, this working range is extended further toλ/3. Hence, one can trade off complexity for accuracy by using a separate calibration process, which is particularly useful for larger aberrations.

     
    more » « less
  3. In this Letter, we report a low-cost, portable, two-photon excitation fluorescence microscopy imager that uses a fiber-based approach for both femtosecond supercontinuum (SC) generation and light delivery to the optical head. The SC generation is based on a tapered polarization-maintaining photonic crystal fiber that uses pre-chirped femtosecond narrowband pulses to generate a coherent SC spectrum with a bandwidth of approximately 300 nm. Using this approach, high-power, near-transform-limited, wavelength-selectable SC pulses are generated and directly delivered to the imaging optical head. Preliminary testing of this imager on brain slices is presented, demonstrating a high signal-to-noise ratio and sub-cellular imaging capabilities to a depth of approximately 200 µm. These results demonstrate the suitability of the technology forex vivoand potentiallyin vivocellular-level biomedical imaging applications.

     
    more » « less
  4. Non-confocal adaptive optics scanning laser ophthalmoscopy (AOSLO) has enhanced the study of human retinal photoreceptors by providing complementary information to standard confocal AOSLO images. Previously we developed the first confocal handheld AOSLO (HAOSLO) capable ofin vivocone photoreceptor imaging in supine and non-cooperative patients. Here, we introduce the first multimodal (M-)HAOSLO for confocal and non-confocal split-detection (SD) imaging to allow for more comprehensive patient data collection. Aside from its unprecedented miniature size and weight, M-HAOSLO is also the first system to perform sensorless wavefront-corrected SD imaging of cone photoreceptors.

     
    more » « less
  5. Three-photon microscopy has been increasingly adopted for probing neural activities beyond the typical two-photon imaging depth. In this review, we outline the unique properties that differentiate three-photon microscopy from two-photon microscopy forin vivoimaging in biological samples, especially in the mouse brain. We present a systematic summary of the optimization of three-photon imaging parameters for neural imaging, based on their effects on calcium imaging quality and perturbation to brain tissues. Furthermore, we review the existing techniques for volumetric imaging and discuss their prospects in mesoscale three-photon imaging in deep tissue.

     
    more » « less