skip to main content


Title: Tuned nonlinear spring-inerter-damper vibration absorber for beam vibration reduction based on the exact nonlinear dynamics model
Award ID(s):
1935951
NSF-PAR ID:
10276235
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of sound and vibration
ISSN:
0022-460X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Several investigators have taken advantage of electromagnetic shunt-tuned mass dampers to achieve concurrent vibration mitigation and energy harvesting. For nonlinear structures such as the Duffing oscillator, it has been shown that the novel nonlinear electromagnetic resonant shunt-tuned mass damper inerter (NERS-TMDI) can mitigate vibration and extract energy for a wider range of frequencies and forcing amplitudes when compared to competing technologies. However, nonlinear systems such as the NERS-TMDI are known to exhibit complex stability behavior, which can strongly influence their performance in simultaneous vibration control and energy harvesting. To address this problem, this paper conducts a global stability analysis of the novel NERS-TMDI using three approaches: the multi-parametric recursive continuationWe emphasize that these assume method, Floquet theory, and Lyapunov exponents. A comprehensive parametric analysis is also performed to evaluate the impact of key design parameters on the global stability of the system. The outcome indicates the existence of complex nonlinear behavior, such as detached resonance curves, and the transition of periodic stable solutions to chaotic solutions. Additionally, a parametric study demonstrates that the nonlinear stiffness has a minimal impact on the linear stability of the system but can significantly impact the nonlinear stability performance, while the transducer coefficient has an impact on the linear and nonlinear stability NERS-TMDI. Finally, the global sensitivity analysis is performed relative to system parameters to quantify the impact of uncertainty in system parameters on the dynamics. Overall, our findings show that simultaneous vibration control and energy harvesting come with a considerable instability trade-off that limits the range of operation of the NERS-TMDI.

     
    more » « less
  2. Abstract A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output. Often, little attention is given to the actual characteristics of common vibrations from which energy is harvested. In order to shed light on the characteristics of common ambient vibration, data representing 333 vibration signals were downloaded from the NiPS Laboratory “Real Vibration” database, processed, and categorized according to the source of the signal (e. g. vehicle, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e. g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs (i. e. single stationary frequency, Gaussian white noise, etc.) commonly assumed for harvester input can be corroborated and refined. Furthermore, some heretofore overlooked vibration input types are given motivation for investigation. The classification determined that, of the set of signals used in the study, 64 % of the animal source signals are best described with nonstationary dominant frequencies, 58 % of machine source signals are best described with stationary frequencies, and vehicle source signals are poorly described by any one signal type used in the classification. Nonlinear harvesters with a cubic stiffness term have received extensive attention in the scholarly literature; a numerical simulation and optimization procedure were performed using several representative signals as vibration inputs to determine the prevalence with which such a nonlinear harvester architecture might provide improvement to power output. The analysis indicated that a nonlinear harvester architecture may prove beneficial in increasing power output over a linear counterpart if the signal contains a single, dominant frequency that is not stationary in time, as evidenced by a 14 % increase in harvester power output when employing an architecture with a nonlinear cubic stiffness function. Other studies have indicated that nonlinear architectures may be beneficial for signals with nonstationary frequencies or filtered noise. 53 % of the all characterized signals fall into categories that could potentially benefit from a nonlinear oscillator architecture. 
    more » « less
  3. Abstract

    The inerter pendulum vibration absorber (IPVA) is integrated between a spar and an annulus floater using a ball-screw mechanism to study its wave energy conversion potential. Hydrodynamic stiffness, added mass, and radiation damping effects on the spar-floater system are characterized using the boundary element method. It is found that a 1:2 internal resonance via a period-doubling bifurcation in the system is responsible for nonlinear energy transfer between the spar-floater system and the pendulum vibration absorber. This nonlinear energy transfer occurs when the primary harmonic solution of the system becomes unstable due to the 1:2 internal resonance phenomenon. The focus of this paper is to analyze this 1:2 internal resonance phenomenon near the first natural frequency of the system. The IPVA system when integrated with the spar-floater system is shown to outperform a linear coupling between the spar and the floater both in terms of the response amplitude operator (RAO) of the spar and one measure of the energy conversion potential of the system. Finally, experiments are performed on the IPVA system integrated with single-degree-of-freedom system (without any hydrodynamic effects) to observe the 1:2 internal resonance phenomenon and the nonlinear energy transfer between the primary mass and the pendulum vibration absorber. It is shown experimentally that the IPVA system outperforms a linear benchmark in terms of vibration suppression due to the energy transfer phenomenon.

     
    more » « less
  4. Abstract

    A nonlinear inerter pendulum vibration absorber is integrated with an electromagnetic power take-off system (called IPVA-PTO) and is analyzed for its efficacy in ocean wave energy conversion of a spar platform. The IPVA-PTO system shows a nonlinear energy transfer phenomenon between the spar and the IPVA-PTO which can be used to convert the vibration energy of the spar into electricity while reducing the hydrodynamic response of the spar. The hydrodynamic coefficients of the spar are computed using a commercial boundary-element-method (BEM) code. It is shown that the energy transfer is associated with 1:2 internal resonance of the pendulum vibration absorber, which is induced by a period-doubling bifurcation. The period-doubling bifurcation is studied using the harmonic balance method. A modified alternating frequency/time (AFT) approach is developed to compute the Jacobian matrix involving nonlinear inertial effects of the IPVA-PTO system. It is shown that the period-doubling bifurcation leads to 1:2 internal resonance and plays a major role in the energy transfer between the spar and the pendulum. The response amplitude operator (RAO) in heave and the capture width of the IPVA-PTO-integrated spar are compared with its linear counterpart and it is shown that the IPVA-PTO system outperforms the linear energy harvester as the former has a lower RAO and higher capture width.

     
    more » « less