skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework
Randomized classifiers have been shown to provide a promising approach for achieving certified robustness against adversarial attacks in deep learning. However, most existing methods only leverage Gaussian smoothing noise and only work for L2 perturbation. We propose a general framework of adversarial certification with non-Gaussian noise and for more general types of attacks, from a unified functional optimization perspective. Our new framework allows us to identify a key trade-off between accuracy and robustness via designing smoothing distributions, helping to design new families of non-Gaussian smoothing distributions that work more efficiently for different Lp settings, including L1, L2 and L-infinite attacks. Our proposed methods achieve better certification results than previous works and provide a new perspective on randomized smoothing certification.  more » « less
Award ID(s):
1846421
PAR ID:
10276255
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Patch adversarial attacks on images, in which the attacker can distort pixels within a region of bounded size, are an important threat model since they provide a quantitative model for physical adversarial attacks. In this paper, we introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size, no patch adversarial examples exist. Our method is related to the broad class of randomized smoothing robustness schemes which provide high-confidence probabilistic robustness certificates. By exploiting the fact that patch attacks are more constrained than general sparse attacks, we derive meaningfully large robustness certificates against them. Additionally, in contrast to smoothing-based defenses against L_p and sparse attacks, our defense method against patch attacks is de-randomized, yielding improved, deterministic certificates. Compared to the existing patch certification method proposed by Chiang et al. (2020), which relies on interval bound propagation, our method can be trained significantly faster, achieves high clean and certified robust accuracy on CIFAR-10, and provides certificates at ImageNet scale. For example, for a 5-by-5 patch attack on CIFAR-10, our method achieves up to around 57.6% certified accuracy (with a classifier with around 83.8% clean accuracy), compared to at most 30.3% certified accuracy for the existing method (with a classifier with around 47.8% clean accuracy). Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet. 
    more » « less
  2. As machine learning (ML) systems become pervasive, safeguarding their security is critical. However, recently it has been demonstrated that motivated adversaries are able to mislead ML systems by perturbing test data using semantic transformations. While there exists a rich body of research providing provable robustness guarantees for ML models against ℓp norm bounded adversarial perturbations, guarantees against semantic perturbations remain largely underexplored. In this paper, we provide TSS -- a unified framework for certifying ML robustness against general adversarial semantic transformations. First, depending on the properties of each transformation, we divide common transformations into two categories, namely resolvable (e.g., Gaussian blur) and differentially resolvable (e.g., rotation) transformations. For the former, we propose transformation-specific randomized smoothing strategies and obtain strong robustness certification. The latter category covers transformations that involve interpolation errors, and we propose a novel approach based on stratified sampling to certify the robustness. Our framework TSS leverages these certification strategies and combines with consistency-enhanced training to provide rigorous certification of robustness. We conduct extensive experiments on over ten types of challenging semantic transformations and show that TSS significantly outperforms the state of the art. Moreover, to the best of our knowledge, TSS is the first approach that achieves nontrivial certified robustness on the large-scale ImageNet dataset. For instance, our framework achieves 30.4% certified robust accuracy against rotation attack (within ±30∘) on ImageNet. Moreover, to consider a broader range of transformations, we show TSS is also robust against adaptive attacks and unforeseen image corruptions such as CIFAR-10-C and ImageNet-C. 
    more » « less
  3. Over the past decade, the machine learning security community has developed a myriad of defenses for evasion attacks. An under- studied question in that community is: for whom do these defenses defend? This work considers common approaches to defending learned systems and how security defenses result in performance inequities across different sub-populations. We outline appropriate parity metrics for analysis and begin to answer this question through empirical results of the fairness implications of machine learning security methods. We find that many methods that have been proposed can cause direct harm, like false rejection and unequal benefits from robustness training. The framework we propose for measuring defense equality can be applied to robustly trained models, preprocessing-based defenses, and rejection methods. We identify a set of datasets with a user-centered application and a reasonable computational cost suitable for case studies in measuring the equality of defenses. In our case study of speech command recognition, we show how such adversarial training and augmentation have non-equal but complex protections for social subgroups across gender, accent, and age in relation to user coverage. We present a comparison of equality between two rejection-based de- fenses: randomized smoothing and neural rejection, finding randomized smoothing more equitable due to the sampling mechanism for minority groups. This represents the first work examining the disparity in the adversarial robustness in the speech domain and the fairness evaluation of rejection-based defenses. 
    more » « less
  4. null (Ed.)
    In the last couple of years, several adversarial attack methods based on different threat models have been proposed for the image classification problem. Most existing defenses consider additive threat models in which sample perturbations have bounded L_p norms. These defenses, however, can be vulnerable against adversarial attacks under non-additive threat models. An example of an attack method based on a non-additive threat model is the Wasserstein adversarial attack proposed by Wong et al. (2019), where the distance between an image and its adversarial example is determined by the Wasserstein metric ("earth-mover distance") between their normalized pixel intensities. Until now, there has been no certifiable defense against this type of attack. In this work, we propose the first defense with certified robustness against Wasserstein Adversarial attacks using randomized smoothing. We develop this certificate by considering the space of possible flows between images, and representing this space such that Wasserstein distance between images is upper-bounded by L_1 distance in this flow-space. We can then apply existing randomized smoothing certificates for the L_1 metric. In MNIST and CIFAR-10 datasets, we find that our proposed defense is also practically effective, demonstrating significantly improved accuracy under Wasserstein adversarial attack compared to unprotected models. 
    more » « less
  5. We study the problem of defending deep neural network approaches for image classification from physically realizable attacks. First, we demonstrate that the two most scalable and effective methods for learning robust models, adversarial training with PGD attacks and randomized smoothing, exhibit very limited effectiveness against three of the highest profile physical attacks. Next, we propose a new abstract adversarial model, rectangular occlusion attacks, in which an adversary places a small adversarially crafted rectangle in an image, and develop two approaches for efficiently computing the resulting adversarial examples. Finally, we demonstrate that adversarial training using our new attack yields image classification models that exhibit high robustness against the physically realizable attacks we study, offering the first effective generic defense against such attacks. 
    more » « less