skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Few Fixed Variants between Trophic Specialist Pupfish Species Reveal Candidate Cis -Regulatory Alleles Underlying Rapid Craniofacial Divergence
Abstract Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists—a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species—only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.  more » « less
Award ID(s):
1938571
PAR ID:
10276284
Author(s) / Creator(s):
;
Editor(s):
Wittkopp, Patricia
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
38
Issue:
2
ISSN:
1537-1719
Page Range / eLocation ID:
405 to 423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundGenetic and epigenetic perturbation of cis-regulatory sequences can shift patterns of gene expression and result in novel phenotypes. Phased genome assemblies now enable the local dissection of linkages between cis-regulatory sequences, including their epigenetic state, and allele-specific gene expression to further characterize gene regulation and resulting phenotypes in heterozygous genomes. ResultsWe assembled a locally phased genome for a mandarin hybrid named ‘Fairchild’ to explore the molecular signatures of allele-specific gene expression. With local genome phasing, genes with allele-specific expression were paired with haplotype-specific chromatin states, including levels of chromatin accessibility, histone modifications, and DNA methylation. We found that 30% of variation in allele-specific expression could be attributed to haplotype associated factors, with allelic levels of chromatin accessibility and three histone modifications in gene bodies having the most influence. Structural variants in promoter regions were also associated with allele-specific expression, including specific enrichments of hAT and MULE-MuDR DNA transposon sequences. Integration of haplotype-resolved genetic and epigenetic landscapes with high-throughput phenotypic analysis of fruit traits in a panel of 154 accessions with mandarin and pummelo ancestry revealed that trait-associated variants were enriched in regions of open chromatin. Mining of trait-associated variants uncovered a Gypsy retrotransposon insertion in a gene that regulates potassium transport and may contribute to the reduction in fruit size that is observed in mandarins. Conclusions​​Using a locally phased assembly of a heterozygous cultivar of citrus, we dissected the interplay between genetic variants and molecular phenotypes to reveal cis-regulatory sequences with potential functional effects on phenotypes relevant for genetic improvement. 
    more » « less
  2. ABSTRACT Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti . For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association. IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti , an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations. 
    more » « less
  3. Abstract The search for the genetic basis of phenotypes has primarily focused on single nucleotide polymorphisms, often overlooking structural variants (SVs). SVs can significantly affect gene function, but detecting and characterizing them is challenging, even with long-read sequencing. Moreover, traditional single-reference methods can fail to capture many genetic variants. Using long reads, we generated a Capuchino Seedeater (Sporophila) pangenome, including 16 individuals from 7 species, to investigate how SVs contribute to species and coloration differences. Leveraging this pangenome, we mapped short-read data from 127 individuals, genotyped variants identified in the pangenome graph, and subsequently performed FST scans and genome-wide association studies. Species divergence primarily arises from SNPs and indels (< 50 bp) in non-coding regions of melanin-related genes, as larger SVs rarely overlap with divergence peaks. One exception was a 55 bp deletion near the OCA2 and HERC2 genes, associated with feather pheomelanin content. These findings support the hypothesis that the reshuffling of small regulatory alleles, rather than larger species-specific mutations, accelerated plumage evolution leading to prezygotic isolation in Capuchinos. 
    more » « less
  4. Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits. 
    more » « less
  5. Abstract The study of local adaptation in the presence of ongoing gene flow is the study of natural selection in action, revealing the functional genetic diversity most relevant to contemporary pressures. In addition to individual genes, genome-wide architecture can itself evolve to enable adaptation. Distributed across a steep thermal gradient along the east coast of North America, Atlantic silversides (Menidia menidia) exhibit an extraordinary degree of local adaptation in a suite of traits, and the capacity for rapid adaptation from standing genetic variation, but we know little about the patterns of genomic variation across the species range that enable this remarkable adaptability. Here, we use low-coverage, whole-transcriptome sequencing of Atlantic silversides sampled along an environmental cline to show marked signatures of divergent selection across a gradient of neutral differentiation. Atlantic silversides sampled across 1371 km of the southern section of its distribution have very low genome-wide differentiation (median FST = 0.006 across 1.9 million variants), consistent with historical connectivity and observations of recent migrants. Yet almost 14,000 single nucleotide polymorphisms (SNPs) are nearly fixed (FST > 0.95) for alternate alleles. Highly differentiated SNPs cluster into four tight linkage disequilibrium (LD) blocks that span hundreds of genes and several megabases. Variants in these LD blocks are disproportionately nonsynonymous and concentrated in genes enriched for multiple functions related to known adaptations in silversides, including variation in lipid storage, metabolic rate, and spawning behavior. Elevated levels of absolute divergence and demographic modeling suggest selection maintaining divergence across these blocks under gene flow. These findings represent an extreme case of heterogeneity in levels of differentiation across the genome, and highlight how gene flow shapes genomic architecture in continuous populations. Locally adapted alleles may be common features of populations distributed along environmental gradients, and will likely be key to conserving variation to enable future responses to environmental change. 
    more » « less