skip to main content

Title: The hidden structure dependence of the chemical life of dislocations
Dislocations are one-dimensional defects in crystals, enabling their deformation, mechanical response, and transport properties. Less well known is their influence on material chemistry. The severe lattice distortion at these defects drives solute segregation to them, resulting in strong, localized spatial variations in chemistry that determine microstructure and material behavior. Recent advances in atomic-scale characterization methods have made it possible to quantitatively resolve defect types and segregation chemistry. As shown here for a Pt-Au model alloy, we observe a wide range of defect-specific solute (Au) decoration patterns of much greater variety and complexity than expected from the Cottrell cloud picture. The solute decoration of the dislocations can be up to half an order of magnitude higher than expected from classical theory, and the differences are determined by their structure, mutual alignment, and distortion field. This opens up pathways to use dislocations for the compositional and structural nanoscale design of advanced materials.
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1709803
Publication Date:
NSF-PAR ID:
10276436
Journal Name:
Science Advances
Volume:
7
Issue:
16
Page Range or eLocation-ID:
eabf0563
ISSN:
2375-2548
Sponsoring Org:
National Science Foundation
More Like this
  1. In two-dimensional (2D) solids, point defects, i.e., vacancies and interstitials, are bound states of topological defects of edge dislocations and disclinations. They are expected to play an important role in the thermodynamics of the system. Yet very little is known about the detailed dynamical processes of these defects. Two-dimensional colloidal crystals of submicrometer microspheres provide a convenient model solid system in which the microscopic dynamics of these defects can be studied in real time using video microscopy. Here we report a study of the dynamical processes of interstitials in a 2D colloidal crystal. The diffusion constants of both mono- and diinterstitials are measured and found to be significantly larger than those of vacancies. Diinterstitials are clearly slower than monointerstitials. We found that, by plotting the accumulative positions of five- and sevenfold disclinations relative to the center-of-mass position of the defect, a sixfold symmetric pattern emerges for monointerstitials. This is indicative of an equilibrium behavior that satisfies local detailed balance that the lattice remains elastic and can be thermally excited between lattice configurations reversibly. However, for diinterstitials the sixfold symmetry is not observed in the same time window, and the local lattice distortions are too severe to recover quickly. This observationmore »suggests a possible route to creating local melting of a lattice (similarly one can create local melting by creating divacancies). This work opens up an avenue for microscopic studies of the dynamics of melting in colloidal model systems.

    « less
  2. Abstract

    Dislocations, linear defects in a crystalline lattice characterized by their slip systems, can provide a record of grain internal deformation. Comprehensive examination of this record has been limited by intrinsic limitations of the observational methods. Transmission electron microscopy reveals individual dislocations, but images only a few square$$\upmu$$μm of sample. Oxidative decoration requires involved sample preparation and has uncertainties in detection of all dislocations and their types. The possibility of mapping dislocation density and slip systems by conventional (Hough-transform based) EBSD is investigated here with naturally and experimentally deformed San Carlos olivine single crystals. Geometry and dislocation structures of crystals deformed in orientations designed to activate particular slip systems were previously analyzed by TEM and oxidative decoration. A curvature tensor is calculated from changes in orientation of the crystal lattice, which is inverted to calculate density of geometrically necessary dislocations with the Matlab Toolbox MTEX. Densities of individual dislocation types along with misorientation axes are compared to orientation change measured on the deformed crystals. After filtering (denoising), noise floor and calculated dislocation densities are comparable to those reported from high resolution EBSD mapping. For samples deformed in [110]c and [011]c orientations EBSD mapping confirms [100](010) and [001](010), respectively, as themore »dominant slip systems. EBSD mapping thus enables relatively efficient observation of dislocation structures associated with intracrystalline deformation, both distributed, and localized at sub-boundaries, over substantially larger areas than has previously been possible. This will enable mapping of dislocation structures in both naturally and experimentally deformed polycrystals, with potentially new insights into deformation processes in Earth’s upper mantle.

    « less
  3. Abstract

    The interactions between solute atoms and crystalline defects such as vacancies, dislocations, and grain boundaries are essential in determining alloy properties. Here we present a general linear correlation between two descriptors of local electronic structures and the solute-defect interaction energies in binary alloys of body-centered-cubic (bcc) refractory metals (such as W and Ta) with transition-metal substitutional solutes. One electronic descriptor is the bimodality of thed-orbital local density of states for a matrix atom at the substitutional site, and the other is related to the hybridization strength between the valancesp-andd-bands for the same matrix atom. For a particular pair of solute-matrix elements, this linear correlation is valid independent of types of defects and the locations of substitutional sites. These results provide the possibility to apply local electronic descriptors for quantitative and efficient predictions on the solute-defect interactions and defect properties in alloys.

  4. The effects of growth conditions on the chemistry, structure, electrical leakage, dielectric response, and ferroelectric behavior of Ba 1−x TiO y thin films are explored. Although single-phase, coherently-strained films are produced in all cases, small variations in the laser fluence during pulsed-laser deposition growth result in films with chemistries ranging from BaTiO 3 to Ba 0.93 TiO 2.87 . As the laser fluence increases, the films become more barium deficient and the out-of-plane lattice parameter expands (as much as 5.4% beyond the expected value for Ba 0.93 TiO 2.87 films). Stoichiometric BaTiO 3 films are found to be three orders of magnitude more conducting than Ba 0.93 TiO 2.87 films and the barium-deficient films exhibit smaller low-field permittivity, lower loss tangents, and higher dielectric maximum temperatures. Although large polarization is observed in all cases, large built-in potentials (shifted loops) and hysteresis-loop pinching are present in barium-deficient films – suggesting the presence of defect dipoles. The effects of these defect dipoles on ferroelectric hysteresis are studied using first-order reversal curves. Temperature-dependent current–voltage and deep-level transient spectroscopy studies reveal at least two defect states, which grow in concentration with increasing deficiency of both barium and oxygen, at ∼0.4 eV and ∼1.2 eVmore »above the valence band edge, which are attributed to defect–dipole complexes and defect states, respectively. The defect states can also be removed via ex post facto processing. Such work to understand and control defects in this important material could provide a pathway to enable better control over its properties and highlight new avenues to manipulate functions in these complex materials.« less
  5. Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratiomore »of active materials. Catalysts such as MnO 2 and Co dopants were employed to accelerate the sulfur conversion reaction during the charge and discharge process. 5 However, catalysts based on transition metals suffer from poor electronic conductivity. Other catalysts such as transition metal dopants are also limited due to the increased process complexities. . In addition, the severe shuttle effects in Li-S batteries may lead to fast failures of the battery. Constructing a protection layer on the separator for limiting the transmission of soluble polysulfides is considered an effective way to eliminate the shuttle phenomenon. However, the soluble sulfides still can largely dissolve around the cathode side causing the sluggish reaction condition for sulfur conversion. 5 To mitigate the issues above, herein we demonstrate a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative vapor deposition (oCVD). Specifically, the electrode is strategically designed into a hierarchal hollow structure via stereolithography technique to increase sulfur usage. The active material concentration loaded to the battery cathode is controlled precisely during 3D printing by adjusting the number of printed layers. Owing to its freedom in geometry and structure, the suggested design is expected to improve the Li ions and electron transport rate considerably, and hence, the battery power density. The printed cathode is sintered at 700 °C at N 2 atmosphere to achieve carbonization of the cathode during which intrinsic carbon defects (e.g., pentagon carbon) as catalytic defect sites are in-situ generated on the cathode. The intrinsic carbon defects equipped with adequate electronic conductivity. The sintered 3D cathode is then transferred to the oCVD chamber for depositing a thin PEDOT layer as a protection layer to restrict dissolutions of sulfur compounds in the cathode. Density functional theory calculation reveals the electronic state variance between the structures with and without defects, the structure with defects demonstrates the higher kinetic condition for sulfur conversion. To further identify the favorable reaction dynamic process, the in-situ XRD is used to characterize the transformation between soluble and insoluble polysulfides, which is the main barrier in the charge and discharge process of Li-S batteries. The results show the oCVD coated 3D printed sulfur cathode exhibits a much higher kinetic process for sulfur conversion, which benefits from the highly tailored hierarchal hollow structure and the defects engineering on the cathode. Further, the oCVD coated 3D printed sulfur cathode also demonstrates higher stability during long cycling enabled by the oCVD PEDOT protection layer, which is verified by an absorption energy calculation of polysulfides at PEDOT. Such modeling and analysis help to elucidate the fundamental mechanisms that govern cathode performance and degradation in Li-S batteries. The current study also provides design strategies for the sulfur cathode as well as selection approaches to novel battery systems. References: Bhargav, A., (2020). Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule 4 , 285-291. Chung, S.-H., (2018). Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials 28 , 1801188. Peng, H.-J.,(2017). Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 7 , 1700260. Chu, T., (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy 3 , 424-439. Shi, Z., (2021). Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials 11 . Figure 1« less