skip to main content


Title: Habitat-Specific Foraging Strategies and Polymorphic Variation of Bluegill Sunfish, Lepomis macrochirus
As generalists, Bluegill Sunfish (Lepomis macrochirus) feed in densely vegetated littoral and pelagic zones. Paradoxically, being a generalist requires that Bluegill adopt habitat-specific foraging strategies in order to successfully exploit local environments. To better understand their foraging behaviors, underwater cameras were deployed in different locations of Lake Waban, MA to reflect the diversity of local habitats within the lake. We identified three foraging strategies: hunting, grazing, and pelagic feeding. Each strategy is categorized as opportunistic or intentional and some are further subdivided into several modalities. Hunting occurs in shallow littoral zones, is intentional, often performed in groups, and is characterized by repeating cycles of burst-coast-stop-search until prey is visually detected. Grazing also occurs in shallow littoral zones, but is either intentional or opportunistic, and is characterized by three modalities depending on vegetation type. Active grazing involves biting and pulling on pondweed, whereas passive grazing involves hovering near milfoil and delicate suction feeding, and surface grazing involves searching beneath lily pads and explosive bouts of suction feeding. Pelagic feeding occurs in deep open water, is often opportunistic, may occur in groups, and is characterized by intermittent swimming from one morsel to the next. Some correlation exists between phenotype, age, and foraging strategy. For example, darker and deeper bodied adults engage in hunting, whereas lighter and fusiform Bluegill of all ages engage in pelagic feeding. These observations demonstrate the complex behaviors that characterize a paradigmatic generalist and illustrate the multitude of variables that impact their specific feeding strategies.  more » « less
Award ID(s):
1754650 2135851
NSF-PAR ID:
10276557
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Integrative and comparative biology
Volume:
61
Issue:
Supplement_1
ISSN:
1557-7023
Page Range / eLocation ID:
E1227-E1228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The axial musculature of fishes has historically been characterized as the powerhouse for explosive swimming behaviors. However, recent studies show that some fish also use their ‘swimming’ muscles to generate over 90% of the power for suction feeding. Can the axial musculature achieve high power output for these two mechanically distinct behaviors? Muscle power output is enhanced when all of the fibers within a muscle shorten at optimal velocity. Yet, axial locomotion produces a mediolateral gradient of muscle strain that should force some fibers to shorten too slowly and others too fast. This mechanical problem prompted research into the gearing of fish axial muscle and led to the discovery of helical fiber orientations that homogenize fiber velocities during swimming, but does such a strain gradient also exist and pose a problem for suction feeding? We measured muscle strain in bluegill sunfish,Lepomis macrochirus,and found that suction feeding produces a gradient of longitudinal strain that, unlike the mediolateral gradient for locomotion, occurs along the dorsoventral axis. A dorsoventral strain gradient within a muscle with fiber architecture shown to counteract a mediolateral gradient suggests that bluegill sunfish should not be able to generate high power outputs from the axial muscle during suction feeding—yet prior work shows that they do, up to 438 W kg−1. Solving this biomechanical paradox may be critical to understanding how many fishes have co-opted ‘swimming’ muscles into a suction feeding powerhouse.

     
    more » « less
  2. Abstract

    Evaluating fish feeding behaviours is imperative to understanding prey resource use in the field. Previous work on fish feeding has taken place almost exclusively in a laboratory setting, which may impose artificial restrictions. Thus, we aimed to evaluate the constraints the captive setting places on fish feeding behaviours.

    We recorded polymorphic (littoral and pelagic) bluegill sunfish (Lepomis macrochirus) feeding in the laboratory and the field using a high‐speed camera and underwater cameras. Following successful strikes video events, were digitised using ImageJ (laboratory) and Argus (field).

    Gape velocity, ram velocity, and body deceleration were higher in the field than in captive fish. Significantly greater gape velocity in field fish suggests that these fish feed with greater suction pressure than captive fish. Prey effects were detected, as brine shrimp feeding events were characterised by slower gape and ram velocities and a smaller gape. Feeding events on brine shrimp in the field were similar to feeding events on worms in the laboratory suggesting an artefact of training.

    These results indicate that feeding behaviours measured in the laboratory may not be representative of feeding behaviours in the wild. Further consideration of organismal performance and laboratory constraints should be taken in future functional studies.

     
    more » « less
  3. ABSTRACT Fishes possess an impressive repertoire of feeding and locomotor behaviors that in many cases rely on the same power source: the axial musculature. As both functions employ different skeletal systems, head versus body, integrating these functions would likely require modular motor control. Although there have been many studies of motor control in feeding or locomotion in fishes, only one study to date has examined both functions in the same individuals. To characterize bilateral motor control of the epaxial musculature in feeding and locomotion, we measured muscle activity and shortening in bluegill sunfish (Lepomis macrochirus) using electromyography and sonomicrometry. We found that sunfish recruit epaxial regions in a dorsal-to-ventral manner to increase feeding performance, such that high-performance feeding activates all the epaxial musculature. In comparison, sunfish seemed to activate all three epaxial regions irrespective of locomotor performance. Muscle activity was present on both sides of the body in nearly all feeding and locomotor behaviors. Feeding behaviors used similar activation intensities on the two sides of the body, whereas locomotor behaviors consistently used higher intensities on the side undergoing muscle shortening. In all epaxial regions, fast-starts used the highest activation intensities, although high-performance suction feeding occasionally showed near-maximal intensity. Finally, active muscle volume was positively correlated with the peak rate of body flexion in feeding and locomotion, indicating a continuous relationship between recruitment and performance. A comparison of these results with recent work on largemouth bass (Micropterus salmoides) suggests that centrarchid fishes use similar motor control strategies for feeding, but interspecific differences in peak suction-feeding performance are determined by active muscle volume. 
    more » « less
  4. Abstract

    Resource polymorphism is a widespread phenomenon in post‐glacial fishes where multiple morphotypes of a species occur sympatrically and exhibit distinct resource use. Availability of open niches and high levels of within and among species competition are thought to drive differences in morphology and may provide insights into early stages of speciation. Hovsgol grayling (Thymallus nigrescens) are endemic to Lake Hovsgol, a lake colonised by fish following the Pleistocene, and are threatened with habitat loss due to climate change and illegal harvest. Previous analysis of Hovsgol grayling diet inferred through C and N stable isotopes suggested the presence of littoral and pelagic foraging groups. We hypothesised that morphology of the two foraging groups would reflect predictions of functional morphology, indicating the presence of resource polymorphism. To test this hypothesis, we evaluated evidence from C and N stable isotopes, stomach contents, fish ages, capture location and morphology. Two foraging groups of Hovsgol grayling were identified through stomach content and C and N stable isotope analysis. Individuals with greater zooplankton consumption were more frequently captured in the pelagic zone, exhibited higher gill raker counts, larger orbit (eye) sizes, longer paired fins, narrower head width, larger maxilla and smaller size at age than the group with greater reliance on benthic invertebrate prey. These differences were generally consistent with those described in other fish species exhibiting littoral–pelagic resource polymorphism. Our study provides the first example of littoral–pelagic resource polymorphism in the salmonid subfamily Thymallinae and highlights the potential influence of competition on fish evolution.

     
    more » « less
  5. Abstract Lake ecosystems, as integrators of watershed and climate stressors, are sentinels of change. However, there is an inherent time-lag between stressors and whole-lake response. Aquatic metabolism, including gross primary production (GPP) and respiration (R), of stream–lake transitional zones may bridge the time-lag of lake response to allochthonous inputs. In this study, we used high-frequency dissolved oxygen data and inverse modeling to estimate daily rates of summer epilimnetic GPP and R in a nutrient-limited oligotrophic lake at two littoral sites located near different major inflows and at a pelagic site. We examined the relative importance of stream variables in comparison to meteorological and in-lake predictors of GPP and R. One of the inflow streams was substantially warmer than the other and primarily entered the lake’s epilimnion, whereas the colder stream primarily mixed into the metalimnion or hypolimnion. Maximum GPP and R rates were 0.2–2.5 mg O 2 L −1  day −1 (9–670%) higher at littoral sites than the pelagic site. Ensemble machine learning analyses revealed that > 30% of variability in daily littoral zone GPP and R was attributable to stream depth and stream–lake transitional zone mixing metrics. The warm-stream inflow likely stimulated littoral GPP and R, while the cold-stream inflow only stimulated littoral zone GPP and R when mixing with the epilimnion. The higher GPP and R observed near inflows in our study may provide a sentinel-of-the-sentinel signal, bridging the time-lag between stream inputs and in-lake processing, enabling an earlier indication of whole-lake response to upstream stressors. 
    more » « less