This paper considers parametricity and its consequent free theorems for nested data types. Rather than representing nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including truly nested types. At the level of terms, it supports primitive pattern matching, map functions, and fold combinators for nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate andchallenging. In particular, to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and cocontinuity conditions on the functors interpreting them must be appropriately threaded throughout the model construction. We also prove that our model satisfies an appropriate Abstraction Theorem, as well as that it verifies all standard consequences of parametricity in the presence of primitive nested types. We give several concrete examples illustrating how our model can be used to derive useful free theorems, including a short cut fusion transformation, for programs over nested types. Finally, we consider generalizing our results to GADTs, and argue that no extension of our parametric model for nested types can give a functorial interpretation of GADTs in terms of left Kan extensions and still be parametric.
more »
« less
Parametricity for Primitive Nested Types
This paper considers parametricity and its resulting free theorems for nested data types. Rather than representing nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including truly nested types. At the term level, it supports primitive pattern matching, map functions, and fold combinators for nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate and challenging: to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and cocontinuity conditions on the functors interpreting them must be appropriately threaded throughout the model construction. We prove that our model satisfies an appropriate Abstraction Theorem and verifies all standard consequences of parametricity for primitive nested types.
more »
« less
- Award ID(s):
- 1906388
- PAR ID:
- 10276566
- Editor(s):
- Kiefer, S; Tasson, C.
- Date Published:
- Journal Name:
- Lecture notes in computer science
- Volume:
- 12650
- ISSN:
- 0302-9743
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep data types are those that are constructed from other data types, including, possibly, themselves. In this case, they are said to be truly nested. Deep induction is an extension of structural induction that traverses all of the structure in a deep data type, propagating predicates on its primitive data throughout the entire structure. Deep induction can be used to prove properties of nested types, including truly nested types, that cannot be proved via structural induction. In this paper we show how to extend deep induction to GADTs that are not truly nested GADTs. This opens the way to incorporating automatic generation of (deep) induction rules for them into proof assistants. We also show that the techniques developed in this paper do not suffice for extending deep induction to truly nested GADTs, so more sophisticated techniques are needed to derive deep induction rules for them.more » « less
-
We present lambda_sym, a typed λ-calculus forlenient symbolic execution, where some language constructs do not recognize symbolic values. Its type system, however, ensures safe behavior of all symbolic values in a program. Our calculus extends a base occurrence typing system with symbolic types and mutable state, making it a suitable model for both functional and imperative symbolically executed languages. Naively allowing mutation in this mixed setting introduces soundness issues, however, so we further addconcreteness polymorphism, which restores soundness without rejecting too many valid programs. To show that our calculus is a useful model for a real language, we implemented Typed Rosette, a typed extension of the solver-aided Rosette language. We evaluate Typed Rosette by porting a large code base, demonstrating that our type system accommodates a wide variety of symbolically executed programs.more » « less
-
Parametric polymorphism and gradual typing have proven to be a difficult combination, with no language yet produced that satisfies the fundamental theorems of each: parametricity and graduality. Notably, Toro, Labrada, and Tanter (POPL 2019) conjecture that for any gradual extension of System F that uses dynamic type generation, graduality and parametricity are ``simply incompatible''. However, we argue that it is not graduality and parametricity that are incompatible per se, but instead that combining the syntax of System F with dynamic type generation as in previous work necessitates type-directed computation, which we show has been a common source of graduality and parametricity violations in previous work. We then show that by modifying the syntax of universal and existential types to make the type name generation explicit, we remove the need for type-directed computation, and get a language that satisfies both graduality and parametricity theorems. The language has a simple runtime semantics, which can be explained by translation to a statically typed language where the dynamic type is interpreted as a dynamically extensible sum type. Far from being in conflict, we show that the parametricity theorem follows as a direct corollary of a relational interpretation of the graduality property.more » « less
-
Relational parametricity was first introduced by Reynolds for System F. Although System F provides a strong model for the type systems at the core of modern functional programming languages, it lacks features of daily programming practice such as complex data types. In order to reason parametrically about such objects, Reynolds’ seminal ideas need to be generalized to extensions of System F. Here, we explore such a generalization for the extension of System F by Generalized Algebraic Data Types (GADTs) as found in Haskell. Although GADTs generalize Algebraic Data Types (ADTs) — i.e., simple recursive types such as lists, trees, etc. — we show that naively extending the parametric treatment of these recursive types is not enough to tackle GADTs. We propose a tentative workaround for this issue, borrowing ideas from the categorical semantics of GADTs known as “functorial completion”. We discuss some applications, as well as some limitations, of this solution.more » « less
An official website of the United States government

