skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Putting the “Learning” into Learning-Augmented Algorithms for Frequency Estimation
In learning-augmented algorithms, algorithms are enhanced using information from a machine learning algorithm. In turn, this suggests that we should tailor our machine-learning approach for the target algorithm. We here consider this synergy in the context of the learned count-min sketch from (Hsu et al., 2019). Learning here is used to predict heavy hitters from a data stream, which are counted explicitly outside the sketch. We show that an approximately sufficient statistic for the performance of the underlying count-min sketch is given by the coverage of the predictor, or the normalized L1 norm of keys that are filtered by the predictor to be explicitly counted. We show that machine learning models which are trained to optimize for coverage lead to large improvements in performance over prior approaches according to the average absolute frequency error. Our source code can be found at https://github.com/franklynwang/putting-the-learning-in-LAA.  more » « less
Award ID(s):
2023528 1563710 1535795
PAR ID:
10276574
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Michael Mahoney (Ed.)
    This paper develops conformal inference methods to construct a confidence interval for the frequency of a queried object in a very large discrete data set, based on a sketch with a lower memory footprint. This approach requires no knowledge of the data distribution and can be combined with any sketching algorithm, including but not limited to the renowned count-min sketch, the count-sketch, and variations thereof. After explaining how to achieve marginal coverage for exchangeable random queries, we extend our solution to provide stronger inferences that can account for the discreteness of the data and for heterogeneous query frequencies, increasing also robustness to possible distribution shifts. These results are facilitated by a novel conformal calibration technique that guarantees valid coverage for a large fraction of distinct random queries. Finally, we show our methods have improved empirical performance compared to existing frequentist and Bayesian alternatives in simulations as well as in examples of text and SARS-CoV-2 DNA data. 
    more » « less
  2. We consider feature selection for applications in machine learning where the dimensionality of the data is so large that it exceeds the working memory of the (local) computing machine. Unfortunately, current large-scale sketching algorithms show poor memory-accuracy trade-off in selecting features in high dimensions due to the irreversible collision and accumulation of the stochastic gradient noise in the sketched domain. Here, we develop a second-order feature selection algorithm, called BEAR, which avoids the extra collisions by efficiently storing the second-order stochastic gradients of the celebrated Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm in Count Sketch, using a memory cost that grows sublinearly with the size of the feature vector. BEAR reveals an unexplored advantage of second-order optimization for memory-constrained high-dimensional gradient sketching. Our extensive experiments on several real-world data sets from genomics to language processing demonstrate that BEAR requires up to three orders of magnitude less memory space to achieve the same classification accuracy compared to the first-order sketching algorithms with a comparable run time. Our theoretical analysis further proves the global convergence of BEAR with O(1/𝑡) rate in 𝑡 iterations of the sketched algorithm. 
    more » « less
  3. Dasgupta, Sanjoy; Haghtalab, Nika (Ed.)
    Convex-concave min-max problems are ubiquitous in machine learning, and people usually utilize first-order methods (e.g., gradient descent ascent) to find the optimal solution. One feature which separates convex-concave min-max problems from convex minimization problems is that the best known convergence rates for min-max problems have an explicit dependence on the size of the domain, rather than on the distance between initial point and the optimal solution. This means that the convergence speed does not have any improvement even if the algorithm starts from the optimal solution, and hence, is oblivious to the initialization. Here, we show that strict-convexity-strict-concavity is sufficient to get the convergence rate to depend on the initialization. We also show how different algorithms can asymptotically achieve initialization-dependent convergence rates on this class of functions. Furthermore, we show that the so-called “parameter-free” algorithms allow to achieve improved initialization-dependent asymptotic rates without any learning rate to tune. In addition, we utilize this particular parameter-free algorithm as a subroutine to design a new algorithm, which achieves a novel non-asymptotic fast rate for strictly-convex-strictly-concave min-max problems with a growth condition and Hölder continuous solution mapping. Experiments are conducted to verify our theoretical findings and demonstrate the effectiveness of the proposed algorithms. 
    more » « less
  4. null (Ed.)
    The problem of recovering heavy components of a high-dimensional vector from compressed data is of great interest in broad applications, such as feature extraction under scarce computing memory and distributed learning under limited bandwidth. Recently, a compression algorithm called count sketch has gained wide popularity to recover heavy components in various fields. In this paper, we carefully analyze count sketch and illustrate that its default recovery method, namely median filtering, has a distinct error pattern of reporting false positives. To counteract this error pattern, we propose a new scheme called zero checking which adopts a two-step recovery approach to improve the probability of detecting false positives. Our proposed technique builds on rigorous error analysis, which enables us to optimize the selection of a key design parameter for maximum performance gain. The empirical results show that our scheme achieves better recovery accuracy than median filtering and requires less samples to accurately recover heavy components. 
    more » « less
  5. null (Ed.)
    Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD compresses model updates using a Count Sketch, and then takes advantage of the merge-ability of sketches to combine model updates from many workers. A key insight in the design of FetchSGD is that, because the Count Sketch is linear, momentum and error accumulation can both be carried out within the sketch. This allows the algorithm to move momentum and error accumulation from clients to the central aggregator, overcoming the challenges of sparse client participation while still achieving high compression rates and good convergence. We prove that FetchSGD has favorable convergence guarantees, and we demonstrate its empirical effectiveness by training two residual networks and a transformer model. 
    more » « less