skip to main content

Title: A Model for Studying the Biomechanical Effects of Varying Ratios of Collagen Types I and III on Cardiomyocytes
Purpose To develop a novel model composed solely of Col I and Col III with the lower and upper limits set to include the ratios of Col I and Col III at 3:1 and 9:1 in which the structural and mechanical behavior of the resident CM can be studied. Further, the progression of fibrosis due to change in ratios of Col I:Col III was tested. Methods Collagen gels with varying Col I:Col III ratios to represent a healthy (3:1) and diseased myocardial tissue were prepared by manually casting them in wells. Absorbance assay was performed to confirm the gelation of the gels. Rheometric analysis was performed on each of the collagen gels prepared to determine the varying stiffnesses and rheological parameters of the gels made with varying ratios of Col I:Col III. Second Harmonic Generation (SHG) was performed to observe the 3D characterization of the collagen samples. Scanning Electron microscopy was used for acquiring cross sectional images of the lyophilized collagen gels. AC16 CM (human) cell lines were cultured in the prepared gels to study cell morphology and behavior as a result of the varying collagen ratios. Cellular proliferation was studied by performing a Cell Trace Violet Assay and the applied force on more » each cell was measured by means of Finite Element Analysis (FEA) on CM from each sample. Results Second harmonic generation microscopy used to image Col I, displayed a decrease in acquired image intensity with an increase in the non-second harmonic Col III in 3:1 gels. SEM showed a fiber-rich structure in the 3:1 gels with well-distributed pores unlike the 9:1 gels or the 1:0 controls. Rheological analysis showed a decrease in substrate stiffness with an increase of Col III, in comparison with other cases. CM cultured within 3:1 gels exhibited an elongated rod-like morphology with an average end-to-end length of 86 ± 28.8 µm characteristic of healthy CM, accompanied by higher cell growth in comparison with other cases. Finite element analysis used to estimate the forces exerted on CM cultured in the 3:1 gels, showed that the forces were well dispersed, and not concentrated within the center of cells, in comparison with other cases. Conclusion This study model can be adopted to simulate various biomechanical environments in which cells crosstalk with the Collagen-matrix in diseased pathologies to generate insights on strategies for prevention of fibrosis. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1927628 1828268
Publication Date:
NSF-PAR ID:
10276593
Journal Name:
Cardiovascular engineering and technology
Volume:
12
Page Range or eLocation-ID:
311-24
ISSN:
1869-4098
Sponsoring Org:
National Science Foundation
More Like this
  1. Tumor stiffness has been associated with malignancy and increased risk for metastasis. Extensive research has been done investigating breast cancer cell lines’ responsiveness to surfaces of varying rigidities as well as examining the biophysical properties of breast cancer tumor samples. However, there is a critical gap regarding the relationship between cells’ mechanosensitivity in conjunction to biophysical properties of their extracellular matrix environment. To explore this relationship, we will analyze single-cell mechanosensitivity in comparison to tumor rigidity via shearwave ultrasound elastogrophy (SWE). Given the putative affiliation, we hypothesize that cells expressing invasive mechanosensitivity profiles will correlate with stiffer tumor regions. Using collagen gels containing different cell types, we derived biopsy-sized samples allowing us to optimize single-cell mechanosensitivity analysis. Cells were stained using different dyes corresponding to invasiveness. Subsequently, we analyzed their morphology. Morphological identification within organoid environments would allow for single-cell analysis without the aggression of tissue digestion, though preliminary results suggest high heterogeneity may not allow for confident cell identification solely on morphology. Thus, inquisition into cell viability and integrity was explored by analyzing the effects of tissue digestion with HyQtase on single-cells. Cell count and live-dead stain via flow cytometry allowed for analysis of single-cell viability. Lastly, cell integritymore »was evaluated by a 2D adhesion assay of isolated cells. The live/dead stain revealed that digestion resulted in isolation of approximately 10% of the original 500,000 cell population with 90–97% of the isolated population being live-cells (invasive and non-invasive respectively). Furthermore, the adhesion assay showed that these isolated single cells retained the ability to adhere to new surfaces, with no difference between the invasive and non-invasive cell types. These results show that cells are able to retain mechanosensitive properties following enzymatic digestion. However, they also suggest our digestion procedure is not aggressive enough to isolate invasive subpopulations that are more strongly imbedded in the original tissues. Development of these novel techniques will allow for accurate and confident analysis of precious human biopsy samples. Insight into the relationship between single-cell mechanosensitivity and tumor biophysical properties could elucidate pathways for metastasis inhibition and prevention.« less
  2. Introduction: Calcific aortic valve disease (CAVD) is an active pathological process leading to severe valve calcification. Late-stage CAVD is characterized by increased leaflet stiffness, disorganized collagen bundles and the deposition of glycosaminoglycans, such as chondroitin sulfate (CS), in the fibrosa layer. However, many details of the cellular pathological cascade remain unknown. Animal models such as mice, rabbits, and pigs are used in understanding human CAVD, but mice do not have similar anatomy, rabbits cannot spontaneously develop atherosclerotic lesions, and pigs require long, expensive and complex studies. Here we utilize microfluidic devices of the aortic valve fibrosa to model late-stage CAVD. Hypothesis: We assessed the hypothesis that microfluidic calcification will increase with increased shear rates and CS content. Methods: Valve-on-a-chip devices contained a hydrogel of 1.5 mg/mL collagen I-only healthy controls or 1.5 mg/mL collagen I with 1 mg/mL or 20 mg/mL CS. Porcine aortic valve interstitial cells (PAVIC) were embedded within and endothelial cells (PAVEC) were seeded onto the matrix. Steady shear stress at 1 dyne/cm 2 and 20 dyne/cm 2 were applied using a peristaltic pump for 14 days. Alizarin Red S (ARS), an assay to assess calcium deposition, was used to quantify calcific nodule formation. Scanning electron microscopymore »with energy dispersive x-ray (SEM/EDX) was used to further analyze sample mineralization. Results: Co-cultures in the presence of increasing shear stress and CS exhibit increased calcific nodule formation compared to static controls, both qualitatively and quantitatively (n≥3). SEM revealed the microstructure of calcified nodules and EDX confirmed calcium phosphate mineralization with physiologically-relevant calcium to phosphorous ratios (Ca/P= 0.88 - 1.4). Conclusions: These results show that in vitro calcification is driven by shear stress in the presence of PAVEC and CS. As seen in ex vivo studies of human calcification, these microfluidic-derived nodules are similarly composed of a range of naturally-occurring calcium phosphates. Given that CAVD has no targeted therapy, the creation of a physiologically relevant model of the aortic valve can provide a test bed for novel therapeutic interventions.« less
  3. Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.
  4. 2938 Using a Human Liver Tissue Equivalent (hLTE) Platform to Define the Functional Impact of Liver-Directed AAV Gene Therapy 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster II Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Clinically Relevant, Diseases, Gene Therapy, Therapies Sunday, December 12, 2021, 6:00 PM-8:00 PM Ritu M Ramamurthy1*, Wen Ting Zheng2*, Sunil George, PhD1*, Meimei Wan1*, Yu Zhou, PhD1*, Baisong Lu, PhD1*, Colin E Bishop, PhD1*, Anthony Atala, M.D.1*, Christopher D Porada, PhD1* and M. Graca Almeida-Porada, MD3 1Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 2Massachusetts Institute of Technology, Cambridge, MA 3Fetal Research and Therapy Program, Wake Forest Institute For Regenerative Medicine, Winston-Salem, NC Clinical trials employing AAV vectors for hemophilia A have been hindered by unanticipated immunological and/or inflammatory responses in some of the patients. Also, these trials have often yielded lower levels of transgene expression than were expected based upon preclinical studies, highlighting the poor correlation between the transduction efficiency observed in traditional 2D cultures of primary cells in vitro, and that observed inmore »those same cell types in vivo. It has been also recognized that there are marked species-specific differences in AAV-vector tropism, raising the critical question of the accuracy with which various animal models will likely predict tropism/vector transduction efficiency, and eventual treatment success in humans. Human liver tissue equivalents (hLTEs) are comprised of major cell types in the liver in physiologically relevant frequencies and possess the ability to recapitulate the biology and function of native human liver. Here, we hypothesize that hLTEs can be used as a better model to predict the efficacy and safety of AAV gene therapy in humans. We fabricated hLTEs using 75% hepatocytes, 10% stellate cells, 10% Kupffer cells, and 5% liver sinusoid-derived endothelial cells in 96-well Elplasia plates with 79 microwells per well. hLTEs were transduced at an MOI of 105vg/cell, on the day of fabrication, with the clinically relevant serotypes AAV5 (hLTE-5) or AAV3b (hLTE-3b), both encoding a GFP reporter. After 4 days of self-aggregation, live/dead assay was performed to confirm viability. Non-transduced hLTEs served as negative controls (hLTE(-)), and hLTEs exposed to 20 mM acetaminophen were used as positive controls for liver inflammation/damage. Incucyte® Live-Cell Imaging system was used to track the aggregation and GFP expression of hLTEs. Over the course of the next 5 days, media was collected to determine hepatic functionality, RNA was isolated to assess dysregulation of genes involved in inflammation and fibrosis, DNA was isolated to determine whether AAV vectors integrate into the genome of human hepatocytes and, if so, to define the frequency at which this occurs and the genomic loci of integration, and hLTEs were fixed and processed at appropriate times for histological analyses and transmission electron microscopy (TEM). TEM analysis revealed that all groups exhibited microvilli and bile-canaliculus-like structures, demonstrating the formation of a rudimentary biliary system and, more importantly, proving that hLTEs resemble native liver structure. Incucyte® imaging showed that AAV5 and AAV3b transduction impaired formation of hLTEs (57.57 ± 2.42 and 24.57 ± 4.01 spheroids/well, respectively) in comparison with hLTE(-) (74.86 ± 3.8 spheroids/well). Quantification of GFP expression demonstrated that AAV5 yielded the most efficient transduction of hLTEs (fold change in GFP expression compared to control: 2.73 ± 0.09 and 1.19 ± 0.03 for hLTE-5 and hLTE-3b, respectively). Chromogenic assays showed decreased urea production in cell culture supernatants of AAV transduced groups compared to the non-transduced hLTEs on days 6 and 10 of culture, demonstrating decreased hepatocyte functionality. However, ALT and AST levels were similar in all groups. On day 10, hLTEs were either used for RNA isolation or fixed in 4% PFA and processed for histology. Masson’s Trichrome and Alcian Blue/Sirius Red staining was performed to detect fibrosis, which was then quantified using ImageJ. These analyses showed no significant increase in fibrosis in either hLTE-5 or hLTE-3b compared to hLTE(-). Nevertheless, RT2 PCR Array for Human Fibrosis detected dysregulation of several genes involved in fibrosis/inflammation in both hLTE-5 and hLTE-3b (16/84 and 26/84, respectively). In conclusion, data collected thus far show successful recapitulation of native liver biology and demonstrate that AAV5 transduces hLTEs more efficiently than AAV3b. However, impaired self-aggregation and decreased hepatocyte functionality was observed in both AAV-transduced groups. Studies to address the incidence and location(s) of AAV integration are ongoing. We have thus shown that the hLTE system can provide critical new knowledge regarding the efficacy and safety of AAV gene therapy in the human liver. Disclosures: No relevant conflicts of interest to declare.« less
  5. Titanium carbide/reduced graphene oxide (Ti 3 C 2 T z /rGO) gels were prepared by a one-step hydrothermal process. The gels show a highly porous structure with a surface area of ∼224 m 2 g −1 and average pore diameter of ∼3.6 nm. The content of GO and Ti 3 C 2 T z nanosheets in the reaction precursor was varied to yield different microstructures. The supercapacitor performance of Ti 3 C 2 T z /rGO gels varied significantly with composition. Specific capacitance initially increased with increasing Ti 3 C 2 T z content, but at high Ti 3 C 2 T z content gels cannot be formed. Also, the retention of capacitance decreased with increasing Ti 3 C 2 T z content. Ti 3 C 2 T z /rGO gel electrodes exhibit enhanced supercapacitor properties with high potential window (1.5 V) and large specific capacitance (920 F g −1 ) in comparison to pure rGO and Ti 3 C 2 T z . The synergistic effect of EDLC from rGO and redox capacitance from Ti 3 C 2 T z was the reason for the enhanced supercapacitor performance. A symmetric two-electrode supercapacitor cell was constructed with Ti 3 Cmore »2 T z /rGO, which showed very high areal capacitance (158 mF cm −2 ), large energy density (∼31.5 μW h cm −2 corresponding to a power density of ∼370 μW cm −2 ), and long stability (∼93% retention) after 10 000 cycles.« less