Titanium carbide/reduced graphene oxide (Ti 3 C 2 T z /rGO) gels were prepared by a one-step hydrothermal process. The gels show a highly porous structure with a surface area of ∼224 m 2 g −1 and average pore diameter of ∼3.6 nm. The content of GO and Ti 3 C 2 T z nanosheets in the reaction precursor was varied to yield different microstructures. The supercapacitor performance of Ti 3 C 2 T z /rGO gels varied significantly with composition. Specific capacitance initially increased with increasing Ti 3 C 2 T z content, but at high Ti 3 C 2 T z content gels cannot be formed. Also, the retention of capacitance decreased with increasing Ti 3 C 2 T z content. Ti 3 C 2 T z /rGO gel electrodes exhibit enhanced supercapacitor properties with high potential window (1.5 V) and large specific capacitance (920 F g −1 ) in comparison to pure rGO and Ti 3 C 2 T z . The synergistic effect of EDLC from rGO and redox capacitance from Ti 3 C 2 T z was the reason for the enhanced supercapacitor performance. A symmetric two-electrode supercapacitor cell was constructed with Ti 3 C 2 T z /rGO, which showed very high areal capacitance (158 mF cm −2 ), large energy density (∼31.5 μW h cm −2 corresponding to a power density of ∼370 μW cm −2 ), and long stability (∼93% retention) after 10 000 cycles.
more »
« less
A Model for Studying the Biomechanical Effects of Varying Ratios of Collagen Types I and III on Cardiomyocytes
Purpose To develop a novel model composed solely of Col I and Col III with the lower and upper limits set to include the ratios of Col I and Col III at 3:1 and 9:1 in which the structural and mechanical behavior of the resident CM can be studied. Further, the progression of fibrosis due to change in ratios of Col I:Col III was tested. Methods Collagen gels with varying Col I:Col III ratios to represent a healthy (3:1) and diseased myocardial tissue were prepared by manually casting them in wells. Absorbance assay was performed to confirm the gelation of the gels. Rheometric analysis was performed on each of the collagen gels prepared to determine the varying stiffnesses and rheological parameters of the gels made with varying ratios of Col I:Col III. Second Harmonic Generation (SHG) was performed to observe the 3D characterization of the collagen samples. Scanning Electron microscopy was used for acquiring cross sectional images of the lyophilized collagen gels. AC16 CM (human) cell lines were cultured in the prepared gels to study cell morphology and behavior as a result of the varying collagen ratios. Cellular proliferation was studied by performing a Cell Trace Violet Assay and the applied force on each cell was measured by means of Finite Element Analysis (FEA) on CM from each sample. Results Second harmonic generation microscopy used to image Col I, displayed a decrease in acquired image intensity with an increase in the non-second harmonic Col III in 3:1 gels. SEM showed a fiber-rich structure in the 3:1 gels with well-distributed pores unlike the 9:1 gels or the 1:0 controls. Rheological analysis showed a decrease in substrate stiffness with an increase of Col III, in comparison with other cases. CM cultured within 3:1 gels exhibited an elongated rod-like morphology with an average end-to-end length of 86 ± 28.8 µm characteristic of healthy CM, accompanied by higher cell growth in comparison with other cases. Finite element analysis used to estimate the forces exerted on CM cultured in the 3:1 gels, showed that the forces were well dispersed, and not concentrated within the center of cells, in comparison with other cases. Conclusion This study model can be adopted to simulate various biomechanical environments in which cells crosstalk with the Collagen-matrix in diseased pathologies to generate insights on strategies for prevention of fibrosis.
more »
« less
- PAR ID:
- 10276593
- Date Published:
- Journal Name:
- Cardiovascular engineering and technology
- Volume:
- 12
- ISSN:
- 1869-4098
- Page Range / eLocation ID:
- 311-24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.more » « less
-
In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant composite’s efficiency and effectiveness towards cell-therapy. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic)-were utilized. After mixing of the SWCNT-surfactant with alginate, the mixtures were cross-linked using divalent calcium ions and characterized using Raman spectroscopy. Rheometric analysis showed an increase in complex viscosity, loss, and storage moduli of the SWCNT composite gels in comparison with pure alginate gels. Scanning electron microscopy revealed the presence of a well-distributed porous structure, and all SWCNT-gel composites depicted enhanced electrical conductivity with respect to alginate gels. To characterize their biocompatibility, cardiomyocytes were cultured atop these SWCNT-gels. Results comprehensively implied that Pluronic F108 was most efficient in preventing agglomeration of the SWCNTs in the alginate matrix, leading to a stable scaffold formation without posing any toxicity to the cells.more » « less
-
Abstract Understanding mesenchymal stromal cells (MSCs) growth mechanisms in response to surface chemistries is essential to optimize culture methods for high‐quality and robust cell yields in cell manufacturing applications. Heparin (HEP) and collagen 1 (COL) substrates have been reported to enhance cell adhesion, growth, viability, and secretory potential in MSCs. However, the biomolecular mechanisms underlying the benefits of combined HEP/COL substrates are unknown. This work used HEP/COL bilayered surfaces to investigate the role of integrin‐HEP interactions in the advantages of MSC culture. The layer‐by‐layer approach (LbL) was used to create HEP/COL bilayers, which were made up of stacks of 8 and 9 layers that combined HEP and COL in an alternate arrangement. Surface spectroscopic investigations and laser scanning microscopy evaluations verified the biochemical fingerprint of each component and a total stacked bilayer thickness of roughly 150 nm. Cell growth and apoptosis in response to IC50and IC75levels of BTT‐3033 and Cilengitide, α2β1 and αvβ3 integrin inhibitors respectively, were evaluated on HEP/COL coated surfaces using two bone marrow‐derived MSC donors. While integrin activity did not affect cell growth rates, it significantly affected cell adhesion and apoptosis on HEP/COL surfaces. HEP‐ending HEP/COL surfaces significantly increased FAK‐ERK½ phosphorylation and endogenous cell COL deposition compared to COL, COL‐ending HEP/COL and uncoated surfaces. BTT‐3033 but not Cilengitide treatment markedly affected FAK‐ERK½ activity levels on HEP‐ending HEP/COL surfaces supporting a major role for α2β1 activity. BTT‐3033 treatment on HEP‐ending bilayers reduced MSC‐mediated macrophage inhibitory activity and altered the cytokine profile of co‐cultures. Overall, this study supports a novel role for HEP in regulating the survival and potency of MSCs via enhancing the α2β1‐FAK‐ERK½ signaling mechanism.more » « less
-
ABSTRACT Hydrogels have been widely used in many applications from tissue engineering to drug delivery systems. For both tissue engineering and drug delivery, the mechanical properties are important because they would affect cell-materials interactions and injectability of drugs encapsulated in hydrogel carriers. Therefore, it is important to study the mechanical properties of these hydrogels, particularly at physiological temperature (37°C). This study adopted strain sweep and frequency sweep rotational rheological tests to investigate the rheological characteristics of various tissue engineering relevant hydrogels with different concentrations at 37°C. These hydrogels include alginate, RGD-alginate, and copolymerized collagen/alginate/fibrin. It has revealed that the addition of RGD has negligible effect on the elastic modulus and viscosity of alginate. Alginate gels have demonstrated shear thinning behavior which indicates that they are suitable candidates as carriers for cells or drug delivery. The addition of collagen and fibrin would reinforce the mechanical properties of alginate which makes it a strong scaffold material.more » « less