skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication of Surfactant-Dispersed HiPco Single-Walled Carbon Nanotube-Based Alginate Hydrogel Composites as Cellular Products
In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant composite’s efficiency and effectiveness towards cell-therapy. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic)-were utilized. After mixing of the SWCNT-surfactant with alginate, the mixtures were cross-linked using divalent calcium ions and characterized using Raman spectroscopy. Rheometric analysis showed an increase in complex viscosity, loss, and storage moduli of the SWCNT composite gels in comparison with pure alginate gels. Scanning electron microscopy revealed the presence of a well-distributed porous structure, and all SWCNT-gel composites depicted enhanced electrical conductivity with respect to alginate gels. To characterize their biocompatibility, cardiomyocytes were cultured atop these SWCNT-gels. Results comprehensively implied that Pluronic F108 was most efficient in preventing agglomeration of the SWCNTs in the alginate matrix, leading to a stable scaffold formation without posing any toxicity to the cells.  more » « less
Award ID(s):
1827745 1828268
PAR ID:
10160747
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
20
Issue:
19
ISSN:
1422-0067
Page Range / eLocation ID:
4802
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis. 
    more » « less
  2. Microcapsules provide a microenvironment by improving the protection and delivery of cells and drugs to specific tissue areas, promoting cell integration and tissue regeneration. Effective microcapsules must not only be permeable for micronutrient diffusion but mechanically stable. Alginate hydrogel is one of the commonly used biomaterials for fabricating microcapsules due to its gel-forming ability and low toxicity. However, its mechanical instability, inertness, and excessive porosity have impeded its use. Embedding nanofibrils in the alginate hydrogel microcapsules improves their biological and mechanical properties. In this research, electrospun composite nanofibers of PCL–gelatin (PG) were first fabricated, characterized, and cryoground. The filtered and cryoground powder solution was mixed with the alginate solution and through electrospray, fabricated into microcapsules. Parameters such as flow rate, voltage, and hydrogel composition, which are critical in the electrostatic encapsulation process, were optimized. The microcapsules were further immersed in different solvent environments (DI water, complete media, and PBS), which were observed and compared for their morphology, size distribution, and mechanical stability properties. The average diameters of the PG nanofibers ranged between 0.2 and 2 μm, with an average porosity between 58 and 73%. The average size of the microcapsules varied between 300 and 900 μm, depending on the solvent environment. Overall, results showed an improved alginate 3D hydrogel network suitable for biomedical applications. 
    more » « less
  3. Chloroplast are sites of photosynthesis that have been bioengineered to produce food, biopharmaceuticals, and biomaterials. Current approaches for altering the chloroplast genome rely on inefficient DNA delivery methods, leading to low chloroplast transformation efficiency rates. For algal chloroplasts, there is no modifiable, customizable, and efficient in situ DNA delivery chassis. Herein, we investigated polyethylenimine-coated single-walled carbon nanotubes (PEI-SWCNT) as delivery vehicles for DNA to algal chloroplasts. We examined the impact of PEI-SWCNT charge and PEI polymer size (25k vs 10k) on the uptake into chloroplasts of wildtype and cell wall knockout mutant strains of the green algae Chlamydomonas reinhardtii. To assess the delivery of DNA bound to PEI-SWCNT, we used confocal microscopy and colocalization analysis of chloroplast autofluorescence with fluorophore-labeled single-stranded GT15 DNA. We found that highly charged DNA-PEI25k-SWNCT have a statistically significant higher percentage of DNA colocalization events with algal chloroplasts (22.28% ± 6.42, 1 hr) over 1-3 hours than DNA-PEI10k-SWNCT (7.23% ± 0.68, 1 hr) (P<0.01). We determined the biocompatibility of DNA-PEI-SWCNT through assays for living algae cells, reactive oxygen species (ROS) generation, and in vivo chlorophyll assays. Through these assays, it was shown that algae exposed to DNA-PEI25k-SWCNT (30 fg/cell) and DNA-PEI10k-SWCNT (300 fg/cell) were viable over 4 days and had little impact on oxidative stress levels. DNA coated PEI-SWCNT transiently increased ROS levels within one hour of exposure to nanomaterials (30- 300 fg/cell) both in the wildtype strain and cell-wall knockout strain, followed by ROS decline to normal levels due to reaction with antioxidant glutathione and lipid membranes. PEI-SWCNT can act as biological carriers for delivering biomolecules such as DNA and have the potential to become novel tools for chloroplast biotechnology and synthetic biology. 
    more » « less
  4. Multi-walled carbon nanotube (MWCNT) filters incorporated with carbon quantum dots (CDots) or single-walled carbon nanotubes (SWCNTs) were produced for bacteria removal from aqueous solutions and also for inactivating the captured bacteria. TMTP Millipore membranes were used as the base of these filters. The results showed that filters with higher MWCNT loading had higher bacterial removal efficiencies. Filters with a MWCNT loading of 4.5 mg were highly effective at removing bacteria from aqueous solution, resulting in a log reduction of 6.41, 6.41, and 5.41 of E. coli cell numbers in filtrates compared to MWCNT filters without coating, MWCNTs filters with 0.15 mg CDot coating, and MWCNTs filters with 0.15 mg SWCNT coating, respectively. Ionic strength played an important role in bacteria removal. A higher NaCl concentration resulted in higher bacteria removal efficiencies of the filters. Both CDot coatings and SWCNT coatings did not significantly affect the MWCNT filter effects ( P > 0.05). The coatings, especially CDot coatings, significantly inhibited the activities of bacteria retained on the filter surfaces ( P < 0.05). The inhibitory rates were 94.21% or 73.17% on the MWCNT filter surfaces coated with 0.2 mg CDots or SWCNTs, respectively. These results demonstrated that MWCNT filters with CDot coatings were highly effective to remove bacteria from water and to inhibit the activities of the captured bacteria on filter surfaces. 
    more » « less
  5. Significant research has been directed toward producing composites that mimic the micro‐ to nanoscale structure of bone tissue, and it remains a challenge to develop synthetic strategies to create cost‐effective biocomposite materials with nanoscale inorganic domains. In this paper, we report the synthesis of nanocrystalline calcium phosphate minerals in situ in gels of a commercially available block copolymer, Pluronic F127 (F127). Although solutions of F127 have previously been explored as a templating agent for calcium phosphate mineralization, here we demonstrate the synthesis of nano‐sized calcium hydrogen phosphate hydrate directly in F127 gels. Composites formed at pH 7 contained highly crystalline, millimeter‐scale crystals of brushite, while composites created at an initial pH of 11 contained nanoscale particles of a calcium hydrogen phosphate hydrate similar to natural bone apatite in morphology and size, with a mean particle diameter of 120 nm. The in situ composites have storage moduli of 15–25 kPa, which is comparable to mechanically processed hydrogel composites containing four times more inorganic material. We believe that our synthetic strategy may provide a new class of versatile and cost‐effective nanostructured biomaterials for use in understanding and replicating mineralized tissues. 
    more » « less