skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal Transformation of Palm Waste to High-Quality Hydrocarbon Fuel
Empty fruit bunches (EFB) are waste products in the palm oil industry. Upon pressing of EFB, a liquor is produced which contains low grade fats, oils, and greases (FOG). These are the least valuable products of palm oil production, and are often discarded as waste. It is shown here that the EFB pressed liquor can be thermally transformed at or below 350 °C to produce a series of hydrocarbons in the range of kerosene and diesel fuel. This is distinctly different from other studies of biofuels from palm oil, which were based entirely on biodiesel (fatty acid methyl ester (FAME)) and biogas production. Furthermore, this transformation takes place without addition of an external catalyst, as was shown by comparison to reactions with the potential Lewis acid catalysts, ferric sulfate, and molecular sieves. The product distribution is similar to that obtained from brown grease, another waste FOG stream obtained from the sewage treatment industry, although the products from palm oil waste are less sensitive to reaction conditions.  more » « less
Award ID(s):
1802524
PAR ID:
10276633
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Fuels
Volume:
1
Issue:
1
ISSN:
2673-3994
Page Range / eLocation ID:
2 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The United States produces more than 10 million tons of waste oils and fats each year. This paper aims to establish a new biomanufacturing platform that converts waste oils or fats into a series of value‐added products. Our research employs the oleaginous yeastYarrowia lipolyticaas a case study for citric acid (CA) production from waste oils. First, we conducted the computational fluid dynamics (CFD) simulation of the bioreactor system and identified that the extracellular mixing and mass transfer is the first limiting factor of an oil fermentation process due to the insolubility of oil in water. Based on the CFD simulation results, the bioreactor design and operating conditions were optimized and successfully enhanced oil uptake and bioconversion in fed‐batch fermentation experiments. After that, we investigated the impacts of cell morphology on oil uptake, intracellular lipid accumulation, and CA formation by overexpressing and deleting theMHY1gene in the wild typeY. lipolyticaATCC20362. Fairly good linear correlations (R2 > 0.82) were achieved between cell morphology and productivities of biomass, lipid, and CA. Finally, fermentation kinetics with both glucose and oil substrates were compared and the oil fermentation process was carefully evaluated. Our study suggests that waste oils or fats can be economical feedstocks for biomanufacturing of many high‐value products. 
    more » « less
  2. The economy of biorefineries is influenced not only by biofuel production from carbohydrates but also by the production of valuable compounds from largely underutilized industrial residues. Currently, the demand for many chemicals that could be made in a biorefinery, such as succinic acid (SA), medium-chain fatty acids (MCFAs), and lactic acid (LA), is fulfilled using petroleum, palm oil, or pure carbohydrates as raw materials, respectively. Thin stillage (TS), the residual liquid material following distillation of ethanol, is an underutilized coproduct from the starch biofuel industry. This carbon-rich material has the potential for chemical upgrading by microorganisms. Here, we explored the formation of different fermentation products by microbial communities grown on TS using different bioreactor conditions. At the baseline operational condition (6-day retention time, pH 5.5, 35°C), we observed a mixture of MCFAs as the principal fermentation products. Operation of a bioreactor with a 1-day retention time induced an increase in SA production, and a temperature increase to 55°C resulted in the accumulation of lactic and propionic acids. In addition, a reactor operated with a 1-day retention time at 55°C conditions resulted in LA accumulation as the main fermentation product. The prominent members of the microbial community in each reactor were assessed by 16S rRNA gene amplicon sequencing and phylogenetic analysis. Under all operating conditions, members of the Lactobacillaceae family within Firmicutes and the Acetobacteraceae family within Proteobacteria were ubiquitous. Members of the Prevotellaceae family within Bacteroidetes and Lachnospiraceae family within the Clostridiales order of Firmicutes were mostly abundant at 35°C and not abundant in the microbial communities of the TS reactors incubated at 55°C. The ability to adjust bioreactor operating conditions to select for microbial communities with different fermentation product profiles offers new strategies to explore and compare potentially valuable fermentation products from TS and allows industries the flexibility to adapt and switch chemical production based on market prices and demands. 
    more » « less
  3. Orange peels are an abundant food waste stream that can be converted into useful products, such as polyhydroxyalkanoates (PHAs). Limonene, however, is a key barrier to building a successful biopolymer synthesis from orange peels as it inhibits microbial growth. We designed a one-pot oxidation system that releases the sugars from orange peels while eliminating limonene through superoxide (O2• −) generated from potassium superoxide (KO2). The optimum conditions were found to be treatment with 0.05 M KO2 for 1 h, where 55% of the sugars present in orange peels were released and recovered. The orange peel sugars were then used, directly, as a carbon source for polyhydroxybutyrate (PHB) production by engineered Escherichia coli. Cell growth was improved in the presence of the orange peel liquor with 3 w/v% exhibiting 90–100% cell viability. The bacterial production of PHB using orange peel liquor led to 1.7–3.0 g/L cell dry weight and 136–393 mg (8–13 w/w%) ultra-high molecular weight PHB content (Mw of ~1900 kDa) during a 24 to 96 h fermentation period. The comprehensive thermal characterization of the isolated PHBs revealed polymeric properties similar to PHBs resulting from pure glucose or fructose. Our one-pot oxidation process for liberating sugars and eliminating inhibitory compounds is an efficient and easy method to release sugars from orange peels and eliminate limonene, or residual limonene post limonene extraction, and shows great promise for extracting sugars from other complex biomass materials. 
    more » « less
  4. Virtual water describes water embedded in the production of goods and offers meaningful insights about the complex interplay between water, trade, and sustainability. In this Review, we examine the trends, major players, traded products, and key drivers of virtual water trade (VWT). Roughly 20% of water used in global food production is traded virtually rather than domestically consumed. As such, agriculture dominates VWT, with livestock products, wheat, maize, soybean, oil palm, coffee, and cocoa contributing over 70% of total VWT. These products are also driving VWT growth, the volume of which has increased 2.9 times from 1986 to 2022. However, the countries leading VWT contributions (with China, the United States, the Netherlands, Germany, and India, accounting for 34% of the global VWT in 2022) have remained relatively stable over time, albeit with China becoming an increasingly important importer. VWT can mitigate the effects of water scarcity and food insecurity, although there are concerns about the disconnect between consumers and the environmental impacts of their choices, and unsustainable resource exploitation. Indeed, approximately 16% of unsustainable water use and 11% of global groundwater depletion are virtually traded. Future VWT analyses must consider factors such as water renewability, water quality, climate change impacts, and socio-economic implications. 
    more » « less
  5. Abstract Demand-side restrictions on high-deforestation commodities are expanding as a climate policy, but their impact on reducing tropical deforestation and emissions has yet to be quantified. Here we model the effects of demand-side restrictions on high-deforestation palm oil in Europe on deforestation and emissions in Indonesia. We do so by integrating a model of global trade with a spatially explicit model of land-use change in Indonesia. We estimate a European ban on high-deforestation palm oil from 2000 to 2015 would have led to a 8.9% global price premium on low-deforestation palm oil, resulting in 21 374 ha yr−1(1.60%) less deforestation and 21.1 million tCO2yr−1(1.91%) less emissions from deforestation in Indonesia relative to what occurred. A hypothetical Indonesia-wide carbon price would have achieved equivalent emission reductions at $0.81/tCO2. Impacts of a ban are small because: 52% of Europe’s imports of high-deforestation palm oil would have shifted to non-participating countries; the price elasticity of supply of high-deforestation oil palm cropland is small (0.13); and conversion to oil palm was responsible for only 32% of deforestation in Indonesia. If demand-side restrictions succeed in substantially reducing deforestation, it is likely to be through non-price pathways. 
    more » « less